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Motivation

I Over time, technologies allow to produce tinier and

tinier objects, and to make use of them in applications.

I In particular, various structures made from thin wires

can be produced:
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⇒ A natural question arises: How does a particle behave

on such a structure?
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Quantum graph
I If the thickness is su�ciently small (a few nm), one can

neglect the real thickness of the wires

→ quantum mechanics on graphs.

. . . reduction from 3-dimensional QM to 1-dimensional QM

� a huge simpli�cation!
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I Quantum graphs are models for structures made from

thin wires.
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Quantum graph (rigorously)

Quantum graph is a pair (Γ,HΓ),

where
I Γ is a metric graph,

I HΓ is a Hamiltonian on Γ.
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Hamiltonian

Let the graph Γ have N edges:
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I wavefunction of a free particle on Γ: Ψ =

 ψ1
...

ψN



I Hamiltonian: HΓ

 ψ1
...

ψN

 =

 −ψ
′′
1

...

−ψ′′N



& boundary conditions at the vertices.
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Boundary vectors (at a vertex of degree n)
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ψ1

ψ2

ψ3

ψ4 ψ5

Ψ(0) :=

 ψ1(0+)
...

ψn(0+)


(limits of values)

Ψ′(0) :=

 ψ′1(0+)
...

ψ′n(0+)


(limits of derivatives)

Boundary conditions

B. c. connect Ψ(0) and Ψ′(0) so that HΓ is self-adjoint.
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Boundary conditions in a vertex of degree n

(I) The b. c. have to connect the boundary vectors ψ1(0+)
...

ψn(0+)

 and

 ψ′1(0+)
...

ψ′n(0+)


(II) so that the Hamiltonian is self-adjoint.

As to (I): How to connect the boundary values?

I Usually in the way

AΨ(0) + BΨ′(0) = 0 ,

where A,B are complex matrices n × n.

As to (II): When is the Hamiltonian self-adjoint?

I (to be answered on the next slide)
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Self-adjointness (Kostrykin & Schrader 1999)

Let us consider for simplicity a graph

with 1 vertex, i.e. a star graph.

Boundary conditions in its vertex:

AΨ(0) + BΨ′(0) = 0 . (1)

Hamiltonian: denoted HΓ.
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Theorem (K & S 1999): HΓ is self-adjoint i�

i. rank(A|B) = n,

ii. AB∗ is self-adjoint.

Any pair (A,B) satisfying i and ii thus determines (via (1))

certain vertex coupling:

(A,B) 7→ vertex coupling

Small problem: Many di�erent pairs (A,B) de�ne the same

coupling.
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Why �(A,B) 7→ vertex coupling� is not one-to-one

If the pair (A,B) is replaced by (CA,CB) for any regular

C ∈ Cn,n, the �new� b. c.

CAΨ(0) + CBΨ′(0) = 0

are identical to

AΨ(0) + BΨ′(0) = 0 .

(Easy to see.)

Sometimes it is useful to have a one-to-one correspondence

(A,B) ←→ vertex coupling .

How to make the pair (A,B) unique?

I By letting them satisfy additional suitable constraint.
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Constraint of Harmer and Kostr. & Schr. (2000)

A = U − I , B = i(U + I )

where U is a unitary matrix n × n.

The b.c. can be written in the form

(U − I )Ψ(0) + i(U + I )Ψ′(0) = 0 . (2)

Advantages:

I (2) looks simple,

I we see immediately that the family of vertex couplings

in a vertex of degree n has n2 real parameters

(because U(n) has n2 real parameters).

Disadvantages:

I Elements of U often do not look simple,

I a unitary matrix �hides� its parameters.
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Constraint of Cheon, Exner and Turek (2010)

B =

 I (m) T

0 0

 , A = −

 S 0

−T ∗ I (n−m)



where

I m = rank(B),

I S is a self-adjoint matrix m ×m,

I T is a general complex matrix m × (n −m),

I I (m), I (n−m) are identity matrices m ×m,

(n −m)× (n −m).
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Constraint of Cheon, Exner and Turek (2010)

We call the constrained b. c. �ST -form�:

 I (m) T

0 0

Ψ′(0) =

 S 0

−T ∗ I (n−m)

Ψ(0) (3)

Disadvantages:

I The structure of (3) is complicated and depends on

rank(B),

I (3) does not allow arbitrary numbering of the edges.

Advantages:

I The elements of S and T represent the coupling

parameters in a straightforward way,

I A and B contain many zero elements.
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One more form

• PQRS-form - the �symmetrized� ST -form

 I (p+q−n) 0 P

R I (n−p) Q + RP

0 0 0

Ψ′(0) =

=

 S −SR∗ 0

0 0 0

−P∗ −Q∗ I (n−q)

Ψ(0) ,

where

I p, q ∈ N0, p + q ≤ n,

I S is a self-adjoint matrix p × p,

I I (p+q−n), I (n−p), I (n−q) are identity matrices of the

given sizes,

I P , Q, R are general complex matrices of the

corresponding sizes.
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Another unique formulation of b.c. (Kuchment)

Theorem (Kuchment 2004): There is an orthogonal

projector P in Cn, Q = Id − P and a self-adjoint operator L

in QCn such that the b. c. can be written as

PΨ(0) = 0 (4a)

QΨ′(0) + LQΨ(0) = 0 . (4b)

Remark. The formulation (4) is in some sense related to the

ST -form.

Advantages:

I Useful for certain calculations.

Disadvantages:

I (4) contains 2n equations

(the form AΨ(0) + BΨ′(0) = 0 has only n equations),

I coupling parameters are again �hidden�.
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Example: δ-coupling with parameter α ∈ R

I the most common type of a point interaction

I is expressed by the following two requirements:

1. continuity in the vertex

ψj(0) = ψk(0)=: ψ(0) ∀ j , k ∈ {1, . . . , n}

2. sum of the derivatives is proportional to the value ψ(0)

n∑
j=1

ψ′j(0) = α · ψ(0)

Remark. Terminology for n = 2: δ-coupling δ-interaction
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δ-coupling expressed by Harmer and Kostr.&Schr.

(U − I )Ψ(0) + i(U + I )Ψ′(0) = 0


2

n+iα − 2 2
n+iα − 1 2

n+iα − 1 · · · 2
n+iα − 1

2
n+iα − 1 2

n+iα − 2 2
n+iα − 1 · · · 2

n+iα − 1
2

n+iα − 1 2
n+iα − 1 2

n+iα − 2 · · · 2
n+iα − 1

...
...

...
...

...
2

n+iα − 1 2
n+iα − 1 2

n+iα − 1 · · · 2
n+iα − 2

Ψ(0)+

+i


2

n+iα
2

n+iα + 1 2
n+iα + 1 · · · 2

n+iα + 1
2

n+iα + 1 2
n+iα

2
n+iα + 1 · · · 2

n+iα + 1
2

n+iα + 1 2
n+iα + 1 2

n+iα · · · 2
n+iα + 1

...
...

...
...

...
2

n+iα + 1 2
n+iα + 1 2

n+iα + 1 · · · 2
n+iα

Ψ′(0) = 0
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δ-coupling expressed in the ST -form

(
I (m) T

0 0

)
Ψ′(0) =

(
S 0

−T ∗ I (n−m)

)
Ψ(0)


1 1 1 · · · 1

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0

Ψ′(0) =


α 0 0 · · · 0

−1 1 0 · · · 0

−1 0 1 · · · 0
...

...
...

...
...

−1 0 0 · · · 1

Ψ(0)

m = rank(B) = 1 , S = (α) , T =
(
1 1 · · · 1

)
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δ-coupling expressed by Kuchment

PΨ(0) = 0

QΨ′(0) + LQΨ(0) = 0

1√
n(n − 1)


1− n 1 · · · 1

1 1− n · · · 1
...

...
. . .

...

1 1 · · · 1− n

Ψ(0) = 0


1√
n
· · · 1√

n
...

...
1√
n
· · · 1√

n

Ψ′(0) +

 −
α√
n
· · · 0

...
. . .

...

0 · · · − α√
n

Ψ(0) = 0
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Understanding vertex couplings

Problem: What is the physical meaning of vertex couplings?

I δ coupling (δ potential) may be considered as a limit

of regular potentials

n=2 (the line):

(similarly for n > 2)

⇒ δ potential is well understood.

I Other couplings ?
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The problem

How to construct (approximate) a singular coupling

in a vertex of degree n

using only δ potentials and vector potentials

(i.e. only well understood objects)?
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Design of our approximating graph

1. Take n disjoint half lines.



Vertex couplings
in quantum

graphs

Ond°ej Turek

Introduction

Formulation of
boundary
conditions

Approximations
of strongly
singular vertex
couplings

Design of our approximating graph

2. Connect the endpoints by short lines of the length d .
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Design of our approximating graph

3. Place a δ potential at each half line endpoint.
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Design of our approximating graph

4. Place a δ potential at the center of each short line.
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Design of our approximating graph

5. Place a constant vector potential on (some) short lines.
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Limit process

6. Now take this system...
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Limit process

7. ... and squeeze the central part...
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Limit process

8. ... more and more.
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What turned out

The limit yields a singular vertex coupling - any requested...
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Supposing that...

... supposing that the strengths of the δ potentials

are properly set and tuned during the squeezing process
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Supposing that...

and the strengths of the vector potentials

are properly set and tuned during the squeezing process.
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Supposing that...

and the strengths of the vector potentials

are properly set and tuned during the squeezing process.
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The role of the ST -form

The ST -form(
I (m) T

0 0

)
Ψ′(0) =

(
S 0

−T ∗ I (n−m)

)
Ψ(0)

I positions of zeros in S and T determine which half lines

have to be connected

I values in S and T determine parameters of the

δ-couplings

I (mainly) phases of entries of S , T determine strengths

of the vector potentials

Remark: If S and T are real (time-reversible vertex

coupling), no added vector potential is necessary.

Remark: Parameters of δ's and potential strengths depend

on d .
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Main result: Norm-resolvent convergence

HAd - Hamiltonian of the

approximated system

HAg
d - Hamiltonian of the

approximating system

The aim is to compare the resolvents

RHAd (k2) and R
H
Ag
d

(k2) ,

but they act on di�erent Hilbert spaces:

L2(G )

G = (R+)n

L2(Gd )

Gd = G ⊕ G ′
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Main result: Norm-resolvent convergence

Therefore we identify RHAd (k2) with

RHAd
d

(k2) := RHAd (k2)⊕ 0 ,

where 0 is the zero operator acting on L2 (G ′).
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Main result: Norm-resolvent convergence

Therefore we identify RHAd (k2) with

RHAd
d

(k2) := RHAd (k2)⊕ 0 ,

where 0 is the zero operator acting on L2 (G ′).

Theorem

Let us assume the notation introduced before. Then

lim
d→0+

∥∥∥R
H
Ag
d

(k2)− RHAd
d

(k2)
∥∥∥ = 0 .

Remark. Roughly speaking, HAg
d converges to HAd in the

norm-resolvent sense as d → 0.

Proof: Long and technical, using Krein's formula.
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