

Discrete Time Quantum Walk with Incommensurate Coin

Yutaka Shikano
Massachusetts Institute of Technology
Tokyo Institute of Technology
In collaboration with Hosho Katsura (Gakushuin University)

Discrete Time Quantum Walk (DTQW)

Probability Distribution at the 1000-th step

Random Walk

Unbiased Coin
(Left and Right
with probability $1 / 2$)

Quantum Walk
Initial Coin State
$(|\uparrow\rangle+|\downarrow\rangle) / \sqrt{2}$
Coin Operator

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Weak Limit Theorem (Limit Distribution)

(Convergence in terms of the distribution)

Random Walk
 Central Limit Theorem

X_{t}
$\Rightarrow N(0,1)$

Quantum Walk
N. Konno, Quantum Information Processing 1, 345 (2002)

$$
X_{t} \rightarrow K\left(\left.\right|_{a} \mid\right) \quad \text { Coin operator } \quad \text { Initial state }
$$

$$
C=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \quad \alpha|\uparrow\rangle+\beta|\downarrow\rangle
$$

Probabilitv densitv

$$
\operatorname{Pr}(\boldsymbol{x})=\frac{\sqrt{1-|a|^{2}}}{\pi\left(1-x^{2}\right) \sqrt{|a|^{2}-x^{2}}}\left\{1-\left(|\alpha|^{2}-|\beta|^{2}+\frac{a \alpha \overline{b \beta}+\overline{a \alpha} b \beta}{|a|^{2}}\right) x\right\}_{\text {for } x \in(-|a|,|a|)}
$$

Experimental and Theoretical Progresses

- Experimental Realizations
- Trapped Atoms with Optical Lattice and Ion Trap
- M. Karski et al., Science 325, 174 (2009). 23 step
- F. Zahringer et al., Phys. Rev. Lett. 104, 100503 (2010). 15 step
- Photon in Linear Optics and Quantum Optics
- A. Schreiber et al., Phys. Rev. Lett. 104, 050502 (2010). 5 step
- M. A. Broome et al., Phys. Rev. Lett. 104, 153602. 6 step
- A. Peruzzo et al., Science 329, 5998 (2010). 10 step (2-particle)
- Molecule by NMR
- C. A. Ryan, M. Laforest, J. C. Boileau, and R. Laflamme, Phys. Rev. A 72, 062317 (2005). 8 step
- Applications
- Universal Quantum Computation
- N. B. Lovett et al., Phys. Rev. A 81, 042330 (2010).
- Quantum Simulator

- T. Oka, N. Konno, R. Arita, and H. Aoki, Phys. Rev. Lett. 94, 100602 (2005). (Landau-Zener Transition)
- T. Kitagawa, M. Rudner, E. Berg, and E. Demler, Phys. Rev. A 82, 033429 (2010). (Topological Phase)

Last-Year Question at RIMS/YITP Conference

- How to deal with the DTQW with decoherence?
- YS, K. Chisaki, E. Segawa, and N. Konno, Phys. Rev. A 81, 062129 (2010).
- Decoherence Mechanism and Crossover to Random Walk
- K. Chisaki, N. Konno, E. Segawa, and YS, arXiv:1009.2131.
- Connection to Continuous Time Quantum Walk
- Crossover to Continuous Random Walk
- Crossover to Lazy Random Walk
- From the DTQW with the time dependent coin.
- M. Gonulol, E. Aydiner, YS, O. Mustecaplioglu, arXiv:1008.0085.
- Multi-particle Quantum Walk on K cycle with trapped sites
- Quantum Phase Transition-like Behavior in Thermodynamic Limit

Today's Question

- We see the ballistic transport in the DTQW in the homogeneous coin case.
- However, in the inhomogeneous case, what behaviors should we see?

Our Model Self-dual model inspired by the Aubry-Andre model

$$
C=\sum_{n}\left[|n\rangle\langle n| \otimes\left(\begin{array}{cc}
\cos (2 \pi \alpha n) & -\sin (2 \pi \alpha n) \\
\sin (2 \pi \alpha n) & \cos (2 \pi \alpha n)
\end{array}\right)\right]
$$

In the dual basis, the roles of coin and shift are interchanged.

$$
\text { Dual basis }\left\{\begin{aligned}
|n, \tilde{\uparrow}\rangle & =\sum_{m}[\sin (2 \pi \alpha m n)|m, \uparrow\rangle+\cos (2 \pi \alpha m n)|m, \downarrow\rangle] \\
|n, \tilde{\downarrow}\rangle & =\sum_{m}[\cos (2 \pi \alpha m n)|m, \uparrow\rangle+\sin (2 \pi \alpha m n)|m, \downarrow\rangle]
\end{aligned}\right.
$$

Probability Distribution at the 1000-th Step

Limit Distribution

Theorem

(YS and H. Katsura, Phys. Rev. E 82, 031122 (2010))
For any irrational $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ and any $\alpha=\frac{P}{4 Q} \in \mathbb{Q}$ with relatively prime P (odd integer) and Q, the limit distribution of the inhomogeneous QW divided by any power of the time variable is localized at the origin:

$$
\frac{X_{t}}{t^{\theta}} \Rightarrow \delta(x) \quad(t \rightarrow \infty)
$$

where X_{t} is the random variable for the position at the t step, $\theta(>0)$ is an arbitrary parameter, and $\delta(\cdot)$ is the Dirac delta function. Note that, " \Rightarrow " means convergence in distribution.

Proof Methods

1. The diagonal elements of the coin must be zero for some positions in the rational number case.
2. Dirichlet's Approximation Theorem

Aubry-Andre Model and Hofstadter Butterfly

- The Aubry-Andre model is related to the Hofstadter butterfly, which has a self-similar and fractal structure.
- The quantum walk operator WC is unitary.
- The absolute value of the eigenvalues of WC is 1.
- The eigenvalues of WC and CW are same.
- We numerically obtain the distribution of the eigenvalues of CW for the parameter α.

Distribution of Eigenvalues

Argument of CW

rle Illii

Analytical Properties

(YS and H. Katsura, to be published in AIP Conf. Proc. (2011))

1. All the eigenvalues at α are identical to those at $1-\alpha$.
2. The eigenvalues come in complex conjugate pairs: for every eigenvalue λ, there is an eigenvalue λ^{*}. Unitarity
3. The eigenvalues come in chiral pairs: for every eigenvalue λ, there is an eigenvalue $-\lambda$. Local Gauge transformation
4. All the eigenvalues are simple, i.e., nondegenerate.

Weaker condition of Perron-Frobenius Theorem
5. There are four eigenvalues $\lambda= \pm 1, \pm i$ for any $\alpha=\frac{P}{4 Q} \in \mathbb{Q}$.

Existence of Unmoved mode of DTQW

6. Every eigenvalue λ at $\alpha=\frac{P}{4 Q} \in \mathbb{Q}$ corresponds to an eigenvalue $i \lambda$ at $\alpha+1 / 2$.

De-Localization Criterion

Theorem (Extended RAGE theorem)

The distribution of the DTQW is not localized if the quantum walk operator $W C$ only has continuous spectra and does not have embedded eigenvalues.

On the RAGE (Ruelle-Amrein-Geogerscu-Enss) Theorem.
B. Simon and M. Reed, Methods of Modern Mathematical Physics Vol.III Scattering Theory. (Academic Press, 1977).

Conjectured by
YS and H. Katsura, Phys. Rev. E 82, 031122 (2010).
Proven by
A. Ahlbrecht, V. Scholz, and A. Werner, work in progress.

Open Question: even if ??

Conclusion

- From the limit distribution,
- We showed the localization in the incommensurate coin model with self dual.
- From the distribution of the eigenvalues,
- We showed the fractal and self-similar properties.
- We proposed on the localization / delocalization in the quantum walk.
- Further Open Questions:
- Recurrence Properties?
- Relationship to Random Coin Case?
(A. Joye and M. Merkli, J. Stat. Phys. 140, 1025 (2010))
- Relationship to Time-dependent Coin Case?
(A. Joye, arXiv:1010.4006)

Please see more details in Phys. Rev. E 82, 031122 (2010).

International Workshop on
 Mathematical and Physical Foundations of

Discrete Time Quantum Walk

Date: March 29th-30th, 2011
Venue: Tokyo Institute of Technology, Japan
Deadline: Dec. 31st, 2010(oral), Feb. 28th, 2011 (poster)

- Invited Speakers

Yakir Aharonov (Tel-Aviv University, Israel / Chapman University, USA)
Stanley Gudder (University of Denver, USA)*
Luis Velazquez (Zaragoza University, Spain)*
Takuya Kitagawa (Harvard University, USA)*
(* to be confirmed)

- Conference Scope

1. Mathematical Foundations of Discrete Time Quantum Walk

1-1. Stochastic Process in Quantum Probability Theory
1-2. Weak Limit Theorem
1-3. Classification between Localization and Delocalization
2. Physical Foundations of Discrete Time Quantum Walk

2-1. Mapped to Schroedinger Equation and Dirac Equation
2-2. Non-local Effect, Entanglement, and Super-oscillation
2-3. Application to Quantum Information Science
Organizers
Norio Konno (Yokohama National University)
Etsuo Segawa (Tokyo Institute of Technology)
Yutaka Shikano (Tokyo Institute of Technology / Massachusetts Institute of Technology, Chair)
Contact
Yutaka Shikano (shikano@th.phys.titech.ac.jp)

http://www.th.phys.titech. ac.jp/~shikano/dtqw/

