Discrete Time Quantum Walk with
Incommensurate Coin

Yutaka Shikano
Massachusetts Institute of Technology
Tokyo Institute of Technology

In collaboration with Hosho Katsura (Gakushuin University)

RESEARCH LABORATORY OF ELECTRONICS .
Massachusetts Institute of Technology www.rle.mit.edu




Discrete Time Quantum Walk (DTQW)

(A. Ambainis, E. Bach, A. Nayak, A.
Vishwanath, and J. Watrous, in
|0> ‘ gb) STOC'01 (ACM Press, New York,
@ 2001), pp. 37 — 49.)
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Probability Distribution at the 1000-th step
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Weak Limit Theorem (Limit Distribution)
(Convergence in terms of the distribution)

Random Walk Central Limit Theorem
—-—0—0—
X
<t = N(O, 1) Prob. 1/2 Prob. 1/2
A’
—o—o—0—

Quantum Walk N. Konno, Quantum Information Processing 1, 345 (2002)
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Experimental and Theoretical Progresses

= EXxperimental Realizations

= Trapped Atoms with Optical Lattice and lon Trap

= M. Karski et al., Science 325, 174 (2009). 23 step

= F. Zahringer et al., Phys. Rev. Lett. 104, 100503 (2010). 15 step
= Photon in Linear Optics and Quantum Optics

= A. Schreiber et al., Phys. Rev. Lett. 104, 050502 (2010). 5 step

= M. A. Broome et al., Phys. Rev. Lett. 104, 153602. 6 step

= A. Peruzzo et al., Science 329, 5998 (2010). 10 step (2-particle)
= Molecule by NMR

= C. A. Ryan, M. Laforest, J. C. Boileau, and R. Laflamme, Phys. Rev. A 72, 062317
(2005). 8 step

= Applications
= Universal Quantum Computation
= N. B. Lovett et al., Phys. Rev. A 81, 042330 (2010).

=  Quantum Simulator

= T. Oka, N. Konno, R. Arita, and H. Aoki, Phys. Rev. Lett. 94, 100602 (2005).
(Landau-Zener Transition)

= T. Kitagawa, M. Rudner, E. Berg, and E. Demler, Phys. Rev. A 82, 033429 (2010).
(Topological Phase)
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Last-Year Question at RIMS/YITP Conference

= How to deal with the DTQW with decoherence?
= YS, K. Chisaki, E. Segawa, and N. Konno, Phys. Rev. A 81, 062129
(2010).
= Decoherence Mechanism and Crossover to Random Walk
= K. Chisaki, N. Konno, E. Segawa, and YS, arXiv:1009.2131.
= Connection to Continuous Time Quantum Walk
= Crossover to Continuous Random Walk

= Crossover to Lazy Random Walk
= From the DTQW with the time dependent coin.

= M. Gonulol, E. Aydiner, YS, O. Mustecaplioglu, arXiv:1008.0085.
= Multi-particle Quantum Walk on K cycle with trapped sites
= Quantum Phase Transition-like Behavior in Thermodynamic Limit
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Today’s Question

= We see the

= However, In
we see”?

Dual basis <

ballistic transport in the DTQW In the

homogeneous coin case.

the inhomogeneous case, what behaviors should

Our Model | Self-dual model inspired by the Aubry-Andre model

o ; :n><n . (cos(zmn) — sin(2man) )

sin(2ran) cos(2man)

In the dual basis, the roles of coin and shift are interchanged.

i n, 1) = Z [sin(2ramn)|m, 1) + cos(2ramn)|m, |)]
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Probability Distribution at the 1000-th Step

C(n) = (

Probability
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Limit Distribution

(YS and H. Katsura, Phys. Rev. E 82, 031122 (2010))

Theorem

For any irrational @ € R \ Q and any a = % € Q with relatively

prime P (odd integer) and @, the limit distribution of the inhomogeneous

QW divided by any power of the time variable is localized at the origin:

X
X sb@) (o)
where X; is the random variable for the position at the ¢ step, 6 (> 0) is an

arbitrary parameter, and J(-) is the Dirac delta function. Note that, “="

means convergence in distribution.

Proof Methods | 1. The diagonal elements of the coin must be zero
for some positions in the rational number case.

2. Dirichlet's Approximation Theorem
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Aubry-Andre Model and Hofstadter Butterfly

= The Aubry-Andre model is related to the Hofstadter butterfly,
which has a self-similar and fractal structure.

= The quantum walk operator WC is unitary.
= The absolute value of the eigenvalues of WC is 1.

= The eigenvalues of WC and CW are same.

= We numerically obtain the distribution of the eigenvalues of
CW for the parameter ( .
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Distribution of Eigenvalues

Argument of CW
it




Analytical Properties
(YS and H. Katsura, to be published in AIP Conf. Proc. (2011))

1. All the eigenvalues at « are identical to those at 1 — .

2. The eigenvalues come in complex conjugate pairs: for every eigenvalue

A, there is an eigenvalue A*.  Unitarity

3. The eigenvalues come in chiral pairs: for every eigenvalue A, there is

an eigenvalue —A. Local Gauge transformation

4. All the eigenvalues are simple, i.e., nondegenerate.

Weaker condition of Perron-Frobenius Theorem
5. There are four eigenvalues A = +1, 4+ for any o = % c Q.

Existence of Unmoved mode of DTQW

6. Every eigenvalue A at a = % € Q corresponds to an eigenvalue ¢\ at
a+1/2.
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De-Localization Criterion

Theorem (Extended RAGE theorem)

The distribution of the DTQW is not localized if the quantum walk op-

erator W' only has continuous spectra and does not have embedded eigen-
values.

On the RAGE (Ruelle-Amrein-Geogerscu-Enss) Theorem.

B. Simon and M. Reed, Methods of Modern Mathematical Physics Vol.lll Scattering Theory.
(Academic Press, 1977).

Conjectured by
YS and H. Katsura, Phys. Rev. E 82, 031122 (2010).

Proven by
A. Ahlbrecht, V. Scholz, and A. Werner, work in progress.

Open Question: even If ??
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Conclusion

= From the limit distribution,
= We showed the localization in the incommensurate coin model
with self dual.
= From the distribution of the eigenvalues,
= We showed the fractal and self-similar properties.
= We proposed on the localization / delocalization in the quantum
walk.
= Further Open Questions:
= Recurrence Properties?
= Relationship to Random Coin Case?
(A. Joye and M. Merkli, J. Stat. Phys. 140, 1025 (2010))
= Relationship to Time-dependent Coin Case?
(A. Joye, arXiv:1010.4006)
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International Workshop on

Mathematical and Physical Foundations of
Discrete Time Q"antum Walk

Date: March 29th-30th, 2011

Venue: Tokyo Institute of Technology,Japan
Deadline: Dec. 31st, 2010(oral), Feb. 28th, 201 1(poster)

Invited Speakers
Yakir Aharonov (Tel-Aviv._University, Israel / Chapman University, USA)
Stanley Gudder (University of Denver, USA)*
Luis Velazquez (ZaragozaUniversity, Spain)*

Takuya Kitagawa (Harvard University, USA)*

(* to be confirmed)

Conference Scope

1. Mathematical Foundations of Discrete Time Quantum Walk
1-1. Stochastic Process in Quantum Probahility Theory
1-2. Weak Limit Theorem
1-3. Classification between,Localization-and Delocalization

2. Physical Foundations of Discrete Time Quantum Walk
2-1. Mapped to Schreedinger Equation and Dirac Equation
2-2. Non-local-Effect, Entanglement, and Super-oscillation
2-3. Application to Quantum Information Science

Organizers

Norio Konno (Yokohama National University)
Etsuo Segawa (Tokyo Institute of Technology)
Yutaka Shikano (Tokyo Institute of Technology / Massachusetts Institute of Technology, Chair)

Contact

Yutaka Shikano (shikano@th.phys.titech.ac.jp)
http://www.th.phys.titech.ac.jp/~shikano/dtqw

Organizers

@Tokyo Tech
3/29 -30/2011
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