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Who Guarantees Universality?

The most important notion in physics

= Universality

In standard theoretical framework, however, induction processes from

measured data generated by the system of interest are not seriously taken

into account, and hence, we do not know to which extent our theoretical

hypotheses are realistic. Thus, if this difficulty is not resolved, no one can

clarify what is the basis for universality.

In this study, therefore, we focus on statistical methods for developing

induction.
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Micro-Macro Duality

Micro-Macro Duality [Oj06] is a bidirectional method between deduction

and induction, and can resolve the following dilemma.

.

Duheme-Quine thesis as a No-Go theorem [Oj10]

.

.

.

. ..

. .

It is impossible to determine uniquely a theory from phenomenological

data so as to reproduce the latter, because of unavoidable finiteness in

number of measurable quantities and of their limited accuracy.

Using our strategy, deduction and induction, or “Micro” and “Macro”,

should be connected with each other by the idea of matching condition.
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Large Deviation Strategy

Large Deviation Strategy (LDS)

= Step-by-Step method of induction based on Large Deviation Principle

+ Micro-Macro duality formulated in the quadrality scheme [Oj10]

consisting of the following four basic ingredients:

1. Algebra (Alg)

2. States (States) and Representations (Reps)

3. Spectrum (Spec)

4. Dynamics (Dyn)
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LDS is based on the following four levels.

1st level : Abelian von Neumann algebras

Gel’fand rep., Strong law of large numbers(SLLN)

and statistical inference on abelian v.N. alg.

2nd level : States and Reps

Measure-theoretical analysis for noncommutative algebras

3rd level : Spec and Alg

Emergence of space-time and composite system

4th level : Dyn

From emergence to space-time patterns and time-series analysis
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Several methods which play central roles in LDS

I. Large deviation principle [DS,E]

From probablistic fluctuation and statistical inference

II. Tomita decomposition theorem and central decomposition

How to formulate and use state-valued random variables

III. The dual Ĝ of a group G and its crossed products

From Macro to Micro

IV. Emergence : Condensation associated with spontaneous

symmetry breaking(SSB) and phase separation

From Micro to Macro

V. Operator-valued kernel method
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1st level: Abelian von Neumann Algebras

Let A be an abelian v.N. alg. and ω be a normal state on A. It holds

that

⟨Ωω, πω(A)Ωω⟩ = ω(A) =

∫
Â(k)dνω(k), (1)

πω(A) ∼= L∞(K, νω), Hω
∼= L2(K, νω), (2)

A∗ ∼= L1(K, νω), Ωω ↔ 1, (3)

where K is a compact Hausdorff space and νω is a Borel measure on K.

Every self-adjoint element πω(A) of πω(A) is treated as

measure-theoretical R-valued random variable Â. Thus, we can discuss

spectra of observables in the commutative case.
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For any k̄ = (k1, k2, · · · ) ∈ KN and A = A∗ ∈ A, we define

Xj(k̄) = kj and Âj(k̄) := Â(Xj(k̄)).

.

Matching condition 1

.

.

.

. ..

.

.

{Âj} are independent identically distributed (“i.i.d.”) random variables.

.

Cramér’s theorem

.

.

.

. ..

.

.

Let Mn(k̄) = 1
n
(Â1(k̄) + · · ·+ Ân(k̄)) and Q(1)

n (Γ) =

Pνω(Mn ∈ Γ).Then, Q(1)
n satisfies LDP with the rate function Iω(a)

= supt∈R{at− cω(t)} (cω(t) = log
∫
R e

txνω(Â ∈ dx)):

− inf
a∈Γo

Iω(a) ≤ lim inf
n→∞

1

n
logQ(1)

n (Γ)

≤ lim sup
n→∞

1

n
logQ(1)

n (Γ) ≤ − inf
a∈Γ

Iω(a) (4)

Other analysis are the same methods used in 2nd level and are omitted

here.
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2nd level: States and Representations

LDS 2nd level goes through the following procedures.

1. Tomita decomposition theorem and central decomposition

2. Sanov’s theorem and quantum relative entropy as rate function

3. Bayesian escort predictive state

4. Singular statistics

The notion of sectors is cruicial for LDS 2nd and 3rd levels.

.

Definition 1. (Sector)

.

.

.

. ..

.

.

A sector of an algebra A is defined by a quasi-equivalence class of factor

states of A.

Two representations π1 and π2 are quasi-equivalent π1 ≈ π2 if π1 and

π2 are unitary equivalent up to multiplicity. Each sector corresponds to a

pure phase parametrized by a spectrum η ∈ SpecZω(A) of the order

parameters constituting the center Zω(A) = πω(A)′′ ∩ πω(A)′ of

πω(A)′′.
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.

Tomita decomposition theorem (see [BR])

.

.

.

. ..

.

.

Let A be a C∗-algebra and ω be a state on A. There is a one-to-one

correspondence between the following three sets.

(i) the orthogonal measure(∗) µ (∈ Oω(EA)) on EA

with barycenter ω;

(ii) the abelian v.N. subalgebra B ⊆ πω(A)′;

(iii) the projection operator P on Hω such that

PΩω = Ωω, Pπω(A)P ⊂ {Pπω(A)P}′.
If µ,B, P are in correspondence one has the following relation.

B is ∗-isomorphic to the map L∞(µ) ∋ f 7→ κµ(f) ∈ πω(A)′

defined by

⟨Ωω, κµ(f)πω(A)Ωω⟩ =
∫
dµ(ω′)f(ω′)Â(ω′)

and for A,B ∈ A

κµ(Â)πω(B)Ωω = πω(B)Pπω(A)Ωω.

(∗) Orthogonality in the sense that∫
∆
χdµ(χ)⊥

∫
EA\∆ χdµ(χ)

for every ∆ ∈ B(EA).
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For the map A ∋ A 7−→ Â ∈ L∞(µ) defined by Â := (EA ∋ ω 7−→
ω(A)), its image Â := {Â|A ∈ A} constitutes a C*-bialgebra of

measure-theoretical random variables w.r.t. a linear structure

(αÂ+ βB̂)(ω) := ( ̂αA+ βB)(ω) (α, β ∈ C), a commutative and

a non-commutative convolution products defined by (Â · B̂)(ω)

:= Â(ω)B̂(ω) and (Â ∗ B̂)(ω) := ÂB(ω) with the norm ∥ · ∥ given
by ∥Â∥ = supω∈EA,∥ω∥=1 |Â(ω)|.

.

Definition 2. (Central and subcentral measures)

.

.

.

. ..

.

.

The measure µ (= µB) ∈ Oω(EA) is called a subcentral measure of

ω, if the algebra B corresponding to µ is a subalgebra of the center

Zω(A). In particular, the subcentral measure µZω(A) =: µω is called a

central measure of ω.

The set {κµω(χ∆)|∆ ∈ B(supp µω)} forms a projection-valued

measure Eω := (B(supp µω) ∋ ∆ 7→ Eω(χ∆) := κµω(χ∆)

∈ Zω(A)) satisfiying

⟨Ωω, Eω(∆)Ωω⟩ = ⟨Ωω, κµω(χ∆)Ωω⟩ = µω(∆).
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Suppose that A is separable.

For ω̃ = (ω1, ω2, · · · ) ∈ (supp µω)
N, A ∈ B(supp µω) and

Γ ∈ B(EA), we define

Yj(ω̃) = ωj ,

Ln(ω̃, A) = 1
n

∑n
j=1 δYj(ω̃)(A),

Q(2)
n (Γ) = Pµω(Ln ∈ Γ).

.

Matching condition 2.

.

.

.

. ..

.

.

{Yj} are independent identically distributed (“i.i.d.”) random variables.

The next theorem [HOT83] is the key to proving LDP.

.

Theorem 2.

.

.

.

. ..

.

.

Let µ, ν be regular Borel probability measures on EA with barycenters

ψ, ω ∈ EA. If there is a subcentral measure m on EA such that µ, ν

≪ m, then S(ψ∥ω) = D(µ∥ν).
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.

Sanov’s theorem

.

.

.

. ..

.

.

If there exists a subcentral measure m on EA such that µω ≪ m, then

Q(2)
n satisfies LDP with the rate function S(·∥ω):

− inf
ψ∈Γo,
µψ≪µω

S(ψ∥ω) ≤ lim inf
n→∞

1

n
logQ(2)

n (Γ)

≤ lim sup
n→∞

1

n
logQ(2)

n (Γ) ≤ − inf
ψ∈Γ,

µψ≪µω

S(ψ∥ω) (5)
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.

Definition 3. (model)

.

.

.

. ..

.

.

A family of states {ωλ|λ ∈ Λ ⊂ R: cpt} is called a (statistical) model

if it satisfies the following two conditions.

(i) There is a subcentral measure m on EA such that µωλ ≪ m for

every λ ∈ Λ.

(ii) The set {ρ ∈ EA|
dµωλ
dm

(ρ) > 0} does not depend on λ ∈ Λ.

.

Definition 4. (Bayesian escort predictive state)

.

.

.

. ..

. .

Let {ωλ}λ∈Λ be a model, π(λ) be a probability distribution on Λ,

pλ(x) be a probability distribution dependent on {ωλ}λ∈Λ,

xn = {x1, · · · , xn} and β > 0. The state

ωxn

π,β =

∫
ωλ

∏n
j=1 pλ(xj)

βπ(λ)dλ∫ ∏n
j=1 pλ(xj)βπ(λ)dλ

(6)

is called a Bayesian escort predictive state. When pλ is equal to
dµωλ
dm

,

we write ωn
π,β = ωρn

π,β.
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.

Theorem 3.

.

.

.

. ..

.

.

The risk function

Tn(ψxn∥ωλ) =
1

A

∫∫
S(ψxn∥ωλ)

n∏
j=1

pλ(xj)
βdν(xj)π(λ)dλ,

(7)

A =

∫∫ n∏
j=1

pλ(xj)
βdν(xj)π(λ)dλ

of ψxn ,which depends on data xn, is minimized at the Bayesian escort

predictive state ωxn

π,β.

This result is a generalization of [Ai75] and [TK05], and is the reason that

the Bayesian escort predictive state is a good estimator for “true” one.
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Now we discuss singular statistics. The results here are proved originally

in [W,W10]. Let {ωλ}λ∈Λ be a model and ϕ ∈ EA such that there is a

subcentral measure m satisfying µωλ , µϕ ≪ m and {ρ ∈ EA| pλ(ρ)
:=

dµωλ
dm

(ρ) > 0} = {ρ ∈ EA| q(ρ) :=
dµϕ
dm

(ρ) > 0} for every
λ ∈ Λ.

.

Definition 5. (Partition function and Likelihood)

.

.

.

. ..

.

.

Zn =

∫ n∏
j=1

p(ρj|λ)βπ(λ)dλ, Z0
n =

Zn∏n
j=1 q(ρj)

β
, (8)

Fn = −
1

β
logZn, F 0

n = −
1

β
logZ0

n. (9)

Zn and 1
n
Fn is called a partition function and an empirical logarithmic

Bayesian escort likelihood, respectively.



Introduction Large Deviation Strategy 1st level: Abelian von Neumann Algebras 2nd level: States and Representations Conclusion and Perspective Reference

Now we discuss singular statistics. The results here are proved originally

in [W,W10]. Let {ωλ}λ∈Λ be a model and ϕ ∈ EA such that there is a

subcentral measure m satisfying µωλ , µϕ ≪ m and {ρ ∈ EA| pλ(ρ)
:=

dµωλ
dm

(ρ) > 0} = {ρ ∈ EA| q(ρ) :=
dµϕ
dm

(ρ) > 0} for every
λ ∈ Λ.

.

Definition 5. (Partition function and Likelihood)

.

.

.

. ..

.

.

Zn =

∫ n∏
j=1

p(ρj|λ)βπ(λ)dλ, Z0
n =

Zn∏n
j=1 q(ρj)

β
, (8)

Fn = −
1

β
logZn, F 0

n = −
1

β
logZ0

n. (9)

Zn and 1
n
Fn is called a partition function and an empirical logarithmic

Bayesian escort likelihood, respectively.



Introduction Large Deviation Strategy 1st level: Abelian von Neumann Algebras 2nd level: States and Representations Conclusion and Perspective Reference

.

Theorem 4.

.

.

.

. ..

.

.

Let D(λ) = D(pλ∥q) (D(0) = 0) , f(ρ, λ) = log q(ρ)
pλ(ρ)

and

Dn(λ) =
1
n

∑n
j=1 f(ρj, ω). By resolution of singularities, it holds that

D(g(u)) = u2k = u2k1
1 . . . u2kd

d , (10)

f(ρ, g(u)) = a(ρ, u)uk, (11)

Dn(g(u)) = u2k −
1
√
n
ukξn(u), (12)

where u = (u1, · · · , ud) is a coordinate system of an analytic manifold

U , and g is an analytic map from U to Λ, k1, · · · , kd are non-negative

integers, a(ρ, u) is an analytic function on U for each ρ ∈ supp µωλ ,

and {ξn} is an empirical process such that

ξn(u) =
1
√
n

n∑
j=1

{a(ρj, u)− uk}, (13)

which converges to a gaussian process ξ(u) weakly.



Introduction Large Deviation Strategy 1st level: Abelian von Neumann Algebras 2nd level: States and Representations Conclusion and Perspective Reference

The zeta function ζ(z) =
∫
C:cpt

D(λ)zπ(λ)dλ can be analytically

continued to the unique meromorphic function on the entire complex

plane. All poles of ζ(z) are real, negative, rational numbers.

(−λ) := maximum poles of ζ(z) (λ > 0),

m := multiplicity of (−λ).

.

Theorem 5.

.

.

.

. ..

.

.

(1)

F 0
n −

λ

β
logn+

m− 1

β
log logn

−→ −
1

β
log

(∑
α∗

γb

∫ ∞

0

dt

∫
tλ−1e−βt+β

√
tξ0(y)φ∗

0(y)dy

)
.

(14)

(2)
1

n
Fn −

λ

β

logn

n
+
m− 1

β

log logn

n
−→ S, (15)

where S = −
∫
dm(ρ)q(ρ) log q(ρ) is the Shannon entropy.
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We define, for ρn = {ρ1, · · · , ρn},

⟨f(λ)⟩ρ
n

π,β =

∫
f(λ)

∏n
j=1 pλ(ρj)

βπ(λ)dλ∫ ∏n
j=1 pλ(ρj)

βπ(λ)dλ
. (16)

.

Definition 6. (Errors, Losses and variance)

.

.

.

. ..

.

.

(1) Bayes generalization error (loss),

Bg = Eρ

[
log q(ρ)

⟨pλ(ρ)⟩ρ
n

π,β

]
, BLg = Eρ

[
− log⟨pλ(ρ)⟩ρ

n

π,β

]
,

respectively.

(2) Bayes training error (loss),

Bt =
1

n

n∑
j=1

[
log

q(ρj)

⟨pλ(ρj)⟩ρ
n

π,β

]
, BLt =

1

n

n∑
j=1

[
− log⟨pλ(ρj)⟩ρ

n

π,β

]
,

(17)

respectively.

(3) functional variance,

V =
∑n

j=1

{
⟨pλ(ρj)2⟩ρ

n

π,β − (⟨pλ(ρj)⟩ρ
n

π,β)
2
}
.
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Let Λϵ = {λ ∈ Λ|D(pλ∥p0) ≤ ϵ}. If there exists A > 0 and ϵ > 0

such that λ ∈ Λϵ ⇒
∫
dm(ρ)q(ρ) log p0(ρ)

pλ(ρ)
≥ A ·D(pλ∥p0), then

the pair (pλ, q) is said to be coherent.

.

Theorem 6.

.

.

.

. ..

.

.

If the pair (pλ, q) satisfies the coherence condition, then it holds that

Eρn [BLg] = Eρn [WAIC] + o

(
1

n

)
, (18)

WAIC = BLt +
β

n
V. (19)

Since WAIC for pλ =
dµωλ
dm

is a quantum version of the information

criteria (IC), we can successfully interpret this result as establishing IC for

quantum states. This also justifies our use of the central measure µω of

ω ∈ EA. On the other hand, IC in the 1st level are the same as those in

classical case. In practical situations to use the methods discussed in this

section, it will be safe for them to be applied to only the case:

ωλ =
∫
ρ dµωλ(ρ) =

∫
B
ρξ dµ̃λ(ξ)

where {ρξ|ξ ∈ Ξ : an order parameter} ⊂ FA, and B is compact.
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Conclusion and Perspective

We have established LDS 1st and 2nd level.

In contrast, LDS 3rd and 4th levels remain to be analyzed. In details,

· How to identify the Spec of order parameters

with a homogeneous space G/H?

· How can we reconstruct the total algebra F acted on

by a group G from the G-fixed observable algebra A ?

· Several kernels {Kτ (·, ·)}τ∈T are strongly related

to the action α of the locally compact group G.

Aut(G) ∋ α←→ {Kτ (·, ·)}τ∈T

to be continued...
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