Universality classes and the Anderson transition in 2 dimensions

T. Ohtsuki, Sophia University (上智大学) Nov. 2010 @ Kyoto Univ.

Collaborators: K. Kobayashi (Sophia Univ.) K. Slevin (Osaka Univ.) H. Obuse (Kyoto Univ.)

outline

- General theory for the Anderson transition
 - Renewed interest due to BEC experiments
 - Scaling theory
 - Classification according to universality classes
- Anderson transition in 2D (symplectic class)
 - Strange metallic behavior
 - Just at the transition;
 - Conductance distribution, multifractal wave function, conformal invariance
 - Lower critical dimension
 - Topological insulator that carries spin current
- Quantum Hall effect (unitary class)

Anderson localization

• Wave+randomness \rightarrow constructive interference \rightarrow localization of wave (P.W.Anderson, '58)

Anderson transition

- is a localization-delocalization transition of the eigenfunctions (at the Fermi energy)
- Characterized by the divergence of the localization length

$$\Psi(x) = a(x) \exp\left(-\frac{|x - x_0|}{\xi}\right)$$

$$\xi \sim \frac{1}{|E - E_c|^{\nu}}, \frac{1}{|W - W_c|^{\nu}}$$

Matter wave (real space)

Billy et al., nature Vol 453 (2008) 891 Direct observation of 1d localization (Prof. Kotani, yesterday's talk) 10⁴ Rb atoms

Matter wave (momentum space)

$$H = \frac{p^2}{2} + K \cos x [1 + \varepsilon \cos(\omega_2 t) \cos(\omega_3 t)] \sum_{n=0}^{N-1} \delta(t-n),$$

$$H = \sum_j \varepsilon_j |j| > \langle j| + \sum_j V_{j',j} |j'| > \langle j|^{0.8}$$

$$H = \sum_j \varepsilon_j |j| > \langle j| + \sum_j V_{j',j} |j'| > \langle j|^{0.8}$$

$$0.6$$
Mapping kicked rotor to 3D Anderson model in momentum space
10⁷ Cs atoms, 3.2 microkelvin

$$\exp(-|p|/p_{loc}) = 0.1 \frac{1}{4} \sum_{j=0}^{N-1} \frac{1}{5} \sum_{j=0}^{N-1} \delta(t-n),$$

Chabe et al., PRL '08

β Function

Nondimensional quantity Q_p

$$\frac{\mathrm{d}Q_{\mathrm{P}}}{\mathrm{d}\ln L} = \beta\left(Q_{\mathrm{P}}\right)$$

Example: log of Thouless conductance

$$g_{\rm Th} \sim \begin{cases} L^{d-2} \\ \exp(-2L/\xi) \end{cases}$$

Classification of the Anderson localization

- Classified to 3 universality classes according to whether the time reversal symmetry (TRS) and spin rotation symmetry (SRS) are preserved or not. (Wigner-Dyson classes: c.f. random matrix theory)
 - Broken TRS due to magnetic field or magnetic impurities → Unitary class
 - − TRS but no SRS due to spin-orbit interaction →
 Symplectic class
 - TRS and SRS \rightarrow Orthogonal class

Model Hamiltonian

Non-interacting, random Hamiltonian

$$H = \sum_{j} \varepsilon_{j} | j \rangle \langle j | + \sum_{j} V_{j',j} | j' \rangle \langle j |$$

In magnetic fields
$$V_{jj'} = V \exp\left[i\frac{e}{\hbar}\int_{j}^{j'} \mathbf{A} \cdot d\mathbf{x}\right]$$

In the presence of spin-orbit interaction

$$H = \sum_{j,\sigma} \varepsilon_{j} \mid j,\sigma > < j,\sigma \mid + \sum_{j,\sigma,\sigma'} V_{j',\sigma',j,\sigma} \mid j',\sigma' > < j,\sigma \mid$$

Lyapunov exponent

Transfer matrix

$$E\psi_{n} = H_{n}\psi_{n} + V_{n,n+1}\psi_{n+1} + V_{n,n-1}\psi_{n-1}$$
$$\begin{pmatrix} \psi_{n} \\ V_{n+1,n}\psi_{n} \end{pmatrix} = T_{n}\begin{pmatrix} \psi_{n} \\ V_{n,n-1}\psi_{n-1} \end{pmatrix} \quad T_{n} = \begin{pmatrix} V_{n,n+1}^{-1} & \mathbf{0} \\ \mathbf{0} & V_{n,n+1}^{\dagger} \end{pmatrix} \begin{pmatrix} EI - H_{n} & -I \\ I & \mathbf{0} \end{pmatrix}$$

Universality

- What justifies the universality of the Anderson transition
 - Weak localization correction $\Delta \sigma = -\frac{e^2}{h} \times \frac{2}{\pi} \log L$
 - Mapping to the nonlinear sigma model

 $Y(\boldsymbol{r}, \boldsymbol{E}, \omega) = \left\langle G_{\boldsymbol{E}_{+}}^{\mathrm{R}}(0, \boldsymbol{r}) G_{\boldsymbol{E}_{-}}^{\mathrm{A}}(\boldsymbol{r}, 0) \right\rangle_{\mathrm{imp}}$ c.f. Kubo formula

$$\longrightarrow Y(\mathbf{r}, E, \omega) = \frac{(\pi \rho(E_{\rm F}))^2}{64} \int DQ \\ \times \operatorname{Str}[k(1_8 + \Lambda)(1_8 - \tau_3)Q(\mathbf{r})(1_8 - \Lambda)(1_8 - \tau_3)kQ(0)] \exp(-F[Q]),$$

Non-linear sigma model for disordered electron system (Hikami 80, Efetov 83)

$$F[Q] = \frac{\pi \rho(E_{\rm F})}{8} \operatorname{Str} \int \mathrm{d}\boldsymbol{r} \left[D_0 (\nabla Q)^2 + 2\mathrm{i}(\omega + \mathrm{i}\delta)\Lambda Q \right]$$
$$Q = W + \Lambda (1 - W^2)^{1/2}, W = \begin{bmatrix} 0 & Q_{12} \\ Q_{21} & 0 \end{bmatrix}$$

Many models are reduced to this nonlinear sigma model!

In terms of Lie Algebra

(Altland-Zirnbauer, PRB '97, for review, Evers-Mirlin RMP'08)

X = iH X satisfies Lie algebra \rightarrow Lie group : U(N)

 $H = H_{sym} + iH_{antisym}$ Real antisymmetric matrix forms subalgebra

 $[H_{antisym}, H'_{antisym}] \in antisymmetric$

 \rightarrow SO(N) Lie group \rightarrow The real symmetric Hamiltonian (orthogonal class) corresponds to U(N)/O(N)

Discrete symmetry like

$$H = \begin{pmatrix} 0 & h \\ h^{\dagger} & 0 \end{pmatrix} \qquad \qquad \tau_z H \tau_z = -H$$

$$X = \begin{pmatrix} h_1 & 0 \\ 0 & h_2 \end{pmatrix} \text{ forms subalgebra} \qquad \begin{bmatrix} X, X' \end{bmatrix} = \begin{pmatrix} h & 0 \\ 0 & h' \end{pmatrix}$$

and the group of *H* corresponds to U(2N)/(U(N)xU(N))

10 universality classes

- Wigner-Dyson class (3 classes)
 - Unitary
 - Orthogonal (TRS+SRS)
 - Symplectic (TRS only), tangent space of U(2N)/Sp(2N)
- chiral class (3 classes)
 - Wigner-Dyson classes + chiral symmetry
- BdG class (4 classes)
 - TRS, SRS

Anderson transition in 2d

- Scaling theory: all states are localized
 - But there are exceptions (in fact 9 out of 10 universality classes show Anderson transitions)
- Specific properties for 2d Anderson transition
 - Wigner-Dyson symplectic class for example
 - Lower critical dimension<2
 - In metal phase, logarithmic increase of conductivity
 - Sensitivity to the edge states
 - Z_2 topological insulator \rightarrow quantum spin Hall effect; application to quantum computation?
 - Conformal invariance

Model Hamiltonian: SU(2) model

$$H = \sum_{i,\sigma} \varepsilon_i c_{i\sigma}^{\dagger} c_{i\sigma} - \sum_{(i,j),\sigma,\sigma'} R(i;j)_{\sigma\sigma'} c_{i\sigma}^{\dagger} c_{j\sigma'},$$

Diagonal matrix element; random onsite potential

$$-\frac{W}{2} < \epsilon_i < \frac{W}{2}$$

(

Nearest neighbor transfer: random spin rotation

$$R(i;j) = \begin{pmatrix} e^{i\alpha_{ij}}\cos\beta_{ij} & e^{i\gamma_{ij}}\sin\beta_{ij} \\ -e^{-i\gamma_{ij}}\sin\beta_{ij} & e^{-i\alpha_{ij}}\cos\beta_{ij} \end{pmatrix} P(\beta)d\beta = \begin{cases} \sin(2\beta)d\beta & 0 \le \beta \le \frac{\pi}{2} \\ 0 & \text{otherwise.} \end{cases}$$

Y. Asada, K. Slevin, and T. Ohtsuki, Phys. Rev. Lett. 89, 256601 ('02)

Conductance in 2D symplectic systems

• Log(L) increase of conductance

– Hikami, Larkin, Nagaoka theory $g = \sigma = a + \frac{1}{\pi} \ln \left(\frac{L}{\ell}\right)$ (in units of e^2/h) 4.4 W=0W=14.2 W=24.0 $a+\pi^{-1}\ln L$ 3.8 🗐 3.6 3.4 W=33.2 100 200 300 60 70 400 L 19 Asada et al,. Physica E 34 (2006) 228

Phase diagram for SU(2) model

Critical exponent, v=2.75±0.01 Well established for many models

Conductance distribution in 2d

 $s = (d-2)\nu \quad \mathbf{\rightarrow} \mathbf{0}$

Scale and model independent But sensitive to the boundary condition

- Wave function at the Anderson transition
 - Scale invariant
 - Multifractal

Klesse, Metzler '99

Conformal invariance?

7

 $\langle \phi(z_1, z_1^*) \phi(z_2, z_2^*) \rangle = |w'(z_1)|^{\eta} |w'(z_2)^*|^{\eta} \langle \phi(z_1', z_1'^*) \phi(z_2', z_2'^*) \rangle$ Z' $\langle \phi(z_1, z_1^*) \phi(z_2, z_2^*) \rangle \sim |z_1 - z_2|^{-2\eta}$ $z' = \frac{L}{2\pi} \ln z$. L: circumference of cylinder $\langle \phi(z'_1, z'^*_1) \phi(z'_2, z'^*_2) \rangle \sim$ $(2\pi/L)^{2\eta}$ $\frac{1}{\{2\cosh[2\pi(x_1'-x_2')/L]-2\cos[2\pi(y_1'-y_2')/L]\}^{\eta}}$ $\rightarrow \exp(-2\pi\eta(x_1 - x_2)/L) = \exp(-(x_1 - x_2)/\xi)$

$$\xi_{\text{cyl}} = \frac{L}{2\pi\eta} \longrightarrow \xi_{\text{cyl}} = \frac{L}{\pi(\alpha_0 - 2)}$$
 M. Jannsen Phys. Rep. '98

23

Conformal invariance 2

- Multifractal analysis for 2d $\alpha_0^b = 2.173 \pm 0.001$ (Obuse et al. PRL '07)
- transfer matrix for quasi 1d $\frac{\xi}{L} = \Lambda_c = 1.843 \pm 0.01$ (Asada et al., PRB '04)

Consistent with the relation

0.5425+-0.0005

 Numerics supports conformal invariance for 2d symplectic class

Topological insulator

• Quantum spin Hall effect

Network model for QSHE

Obuse, et al. PRB(2007), Avishai, private commun. (2006)

Phases and transition points in quantum spin Hall network model

Boundary condition dependence and

model independence

Kobayashi, Ohtsuki, Slevin, Obuse PRB ('10)

Critical dimensions

- Lower critical dimension $d_{L} < 2$?
- Analyses based on the level statistics

 $v=3.50\pm0.11^{9}$

Unitary class

- Standard unitary class has no extended states
- Quantum Hall effect→states are extended at the center of the Landau band

Quantum Hall effect 2

- Critical exponent→still controversial
 - -v=2.37(till 2009) $\rightarrow v=2.59+-0.01$ (Slevin, Ohtsuki, '09)
 - Relation between multifractal exponent and transfer matrix Lyapunov exponent, not well extablished
 - Still much work needed

Summary

- Anderson transition → renewed interested due to recent experimental developments
- Concept of universality classes→useful
- 2d Anderson transition
 - 2d symplectic class
 - Lower critical dimension<2, but what is the value?
 - logarithmic increase of conductance is real?
 - Conformal invariance at the transition is supported
 - Topological insulating phases due to edge states
 - Change of conductance distributions at critical point
 - Unitary class: Quantum Hall effect
 - further studies are needed