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Introduction (D RG flon and
S.Ohya
e Slowly moving particle cannot resolve the structure of a Introduction
short-ranged scatterer (e.g. an impurity or a defect). Star graph
e (Much) below a physical cutoff scale L, any short-ranged Er:hgofilw
interaction can be approximated by a point interaction. RG flow
Duality
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Introduction (2): trivial example RS o
S.Ohya
2 2 L L
H=— v, v - {T’ N saiucion
dx 0, otherwise P
Kirchhoff's law
e (Much) below the cutoff scale L, reflection and S
transmission coefficients for a particle of momentum k are RG flow
given by Duality
lk Summary

g
R(k;g) = r—t T(k;g)

e On length scale > L, we require that the physics (i.e.
function forms of R and T') should not change as we
change the momentum scale k — ke’. This requirement is
expressed as

R(ke';g) = R(k;&(t)) and T(ke';g) = T(k;g(1)),

from which we find the running coupling constant

- ik—g

g(t) =ge ™.
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RG flow and

Today’s talk s

S.Ohya

Introduction

Star graph
Kirchhoff’s law
S-matrix
Bound states

RG flow

e spinless one-particle quantum mechanics on star graph
Duality

e absence of long-ranged interaction (such as Coulomb force) S

o long-wavelength limit

= theory space = parameter space of U(N)
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Quantum particle on a star graph

One particle quantum mechanics on star graph with N bonds

e jth bond = jth half-line (0 < x; < o)
e vertex = junction point x; = 0, 7

e wave function

yi(x1), x € 1st bond,

yn(xy), x € Nth bond.

Schrodinger equation (in the units i =2m = 1)

d2

—a *70

Hy(x)=Ey(x), H=
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Kirchhoff’s law for boundary conditions (D RS o

Requirement: probability conservation at the vertex 5:0ma

Introduction
Star graph

Ji0) =0, jj(x;) = =i [ (x)Wi(x;) — w7 () wi(x))] R

1 S-matrix
Bound states

s

J

RG flow
Duality

Summary
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Kirchhoff’s law for boundary conditions (1)

Requirement: probability conservation at the vertex

=

~.

v1(0)

WN.(O)

-

v (0)

v4(0)

v (0)

W4(0)

-

Ji0) =0, jj(x;) == —i [y} (xj)wi(x)) — Wi (x;)wj(x))]

v1(0)

WN.(O)
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Kirchhoff’s law for boundary conditions (1)

Requirement: probability conservation at the vertex

Ji0) =0, jj(x;) == —i [y} (xj)wi(x)) — Wi (x;)wj(x))]

s

J

(%@1WW) w0\ " /vi(0)

< g g = g g
wn(0) wy(0) wy(0) wn(0)
(%@ viO\[* | /w0 AONE
& Co | =i = L | +ie |
vy (0) vy (0) v (0) vy (0)

(Lo: arbitrary length scale (a.k.a scale anomaly))
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Kirchhoff’s law for boundary conditions (1)

Requirement: probability conservation at the vertex

N
Z:ljjozov j(xj) [WJ () wj(xj) — ‘I/f(xj)‘l/j/'(xj)}
=
( )( ) (w{(0)>7 (WO))
& 2
(0) vy (0)
o)l )= )
& iLo : = : +iLo
v (0) (0)
(Lo: arbitrary length scale (a.k.a scale anomaly))
o)) 1))
& iLo : =U : +iLy
L \wn(0) (0)

(U eU(N))
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Kirchhoff’s law for boundary conditions (2)
e U(N) family of boundary conditions

v1(0) v1(0)

a-u)| : |-iLo@+U)| : | =0, UeU(N).

wn(0) vy (0)
e spectral decomposition of U
N .
U= ) e%P;, P;:projection operator
j=1
e U(N) family of boundary conditions boils down to the N

independent conditions
¥i(0) vi(0) .
P; S S PN =0, L;:=Locot—L
win (0) vy (0)
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Example: N =2 (junction of two half-lines = line)

2 ¥2(0) ¥;(0)

Case ¢; = (0,0,1): separated subfamily

v1(0) +Liy;(0) =0,
¥2(0) + Loy (0) = 0.
e L1, =0 (04, =m): Dirichlet BC
e Lip =00 (012 =0): Neumann BC

Case ¢; = (1,0,0): parity invariant subfamily

W1(0) + 2(0) + L1 (1 (0) + y3(0)) =0,
¥1(0) — w2(0) + Lo (w1 (0) — w3(0)) = 0.
e [, =0 (o = ): 8-function potential V(x) = L%S(x)

2. .5 ! —
1+¢;-0 [(‘I/I (0)> +L; (‘V} (O)>] =0, & = —¢; :unit vector
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H RG fl d
S-matrix on star graph duality

S.Ohya

e positive energy solution

Introduction

Wj(xj3k) = AT (k)e ™™ et an
+ A?Ut ( k)elkxl g_omu::ln:tates
’ RG flow
e evolution map between Duality
“in-state” and “out-state”: Surpnay
A?ut Ailn
L[ =SkLo) | |
a3 Ay
where the S-matrix S(kLo) is given by
Rl(kL()) le(kL()) TIN(kL())
T (kLo) Ro(kLo) -+ Ton(kLo) N kL —1
S(kLg)=| S =Y
= ikLj+1

Tvi(kLo) Tw2(kLo) --- Rn(kLo) -



Bound states and antibound (or virtual) states

e bound (antibound) state = A

simple pole of S(kLy) lying
on the positive (negative)

. . . (bound states)
imaginary k-axis

e bound/antibound state 0 o
energy at a pole k =i/L;:

0 2 1 (antibound states)

e bound/antibound state wave function at a pole k =i/L;:

; 109
Wg,,j(x;) o< exp <—%> (Lz =L COt?ly Ly > 0)
1

normalizable bound state forO<oy<m
non-normalizable antibound state for @ < a; <27
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Phase diagram for N =2

(2%)

2r

|

)

1 bound state

0 bound state

2 bound states

1 bound state

2r
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Exact RG flow of point interaction (1)

Renormalization group transformation

Since Ly is an arbitrary parameter, any physical quantities must
be independent of the choice of Ly. The lack of dependence of
Ly can be expressed as the invariance of the theory under the
RG transformation

R :Lo— L(t) :=Loe™", —oo<t< o0

Renormalization group equation

Any change of Ly must be equivalent to changes in the U(N)
parameters. This is expressed as the RG equation

S(kLo; tj, Py) = S(KL(1); 0;(1), Py (1)),

or, equivalently,

S((ke")Los aj, Pj) = S(kLo; (1), P;(t)).-
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Exact RG flow of point interaction (2 RS oo
Since k appears only in the combination kL; = kLg cot %, the S.0hya

rescaling of k must be adjusted by the running of «;:

Introduction

O k—ke! o ot ar gra
kLo cot =~ iy kLg (e’ cot —’) =kLy (cotﬁ> , s;mhioﬁ'? tm
2 2 2 S-matrix
Bound states
from which we find RG flow
o _ Duality
0j(t) =2arctan (e_t tan 7’) and Pj(t) =P;. Summary
0, (’)“
______ = ==
<o <21
T
OC_/’ =T

~Y
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Exact RG flow of point interaction (3)

exact (3-function

_ da;(t .
oy (a5(0)) = 2B~ _singy(0)
t aj,Ly
s
P |
/ARHmh UV limit
0 )7 (t — —co) (t o2 +0)

NEEY AR

e a; =0: UV fixed point; af = 7: IR fixed point
o 2V fixed points on TV = {(0y,---,0y) | 0 < @tj < 27}
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Exact RG flow of point interaction (3)

Example: N =2

[2%]
e UV (Neumann) fixed point e
2
U=5=1
¥1(0) =0 = y;(0)
T
¢ IR (Dirichlet) fixed point e
U=5=-1
0 7 o v1(0) =0=v»(0)

o Filop-Tsutsui fixed point e

U:S:<igosq) e sm(p)
ecos¢p —cosQ
¢

¥2(0) = tan Zy1(0),  w3(0) = —e cor Ly (0)
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Duality

e elementary identity

1 ¢ (X/ ¢ ( (X/ 4 )
- —=tan— = —cot ( — + —
cot% 2 2

YRS

e identity of S-matrix eigenvalue

ikLocot% -1 i(kLo)*lcot(

-1

+ 2
o 2
ikLocot 5 + 1 i(kLo)~'cot(F £2)+1
e identity of S-matrix
S(kLo; 0tj, Pj) = —S((kLo)~'s 0 = 0, P))

which implies that

| {oy, P} {oj 7P}
UV regime dual IR regime
E>01 R regime < UV regime
bound states dual @ntibound states
E <0 =3

antibound states bound states
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RG flow and
Summary Mo

S.Ohya

Introduction

Star graph
Kirchhoff’s law
S-matrix
Bound states

RG flow
e Exact RG flow of U(N) family of point interactions Duality
e Duality between the systems {o;,P;} and {o; =7, P;} =

e scattering states: high energy < low energy
e bound state < antibound state
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