Exact RG flow and UV/IR duality in quantum graphs

Satoshi Ohya¹ Makoto Sakamoto¹ Motoi Tachibana²

¹Department of Physics, Kobe University ²Department of Physics, Saga University

YITP Workshop on Duality and Scale in Quantum Science, Kyoto November 4–6, 2009 RG flow and duality
S.Ohva

Introduction

Star graph
Kirchhoff's law
S-matrix
Bound states

RG flow Duality

Summary

Typeset by LATEX BEAMER

- Slowly moving particle cannot resolve the structure of a short-ranged scatterer (e.g. an impurity or a defect).
- (Much) below a physical cutoff scale *L*, any short-ranged interaction can be approximated by a point interaction.

Introduction

Star graph
Kirchhoff's law
S-matrix
Bound states

RG flow Duality

Introduction ②: trivial example

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x), \quad V(x) = \begin{cases} \frac{2g}{L}, & -\frac{L}{2} < x < \frac{L}{2} \\ 0, & \text{otherwise} \end{cases}$$

• (Much) below the cutoff scale *L*, reflection and transmission coefficients for a particle of momentum *k* are given by

$$R(k;g) = \frac{g}{ik - g}, \quad T(k;g) = \frac{ik}{ik - g}.$$

• On length scale $\gg L$, we require that the physics (i.e. function forms of R and T) should not change as we change the momentum scale $k \mapsto k e^t$. This requirement is expressed as

$$R(ke^t;g) = R(k;\bar{g}(t))$$
 and $T(ke^t;g) = T(k;\bar{g}(t)),$

from which we find the running coupling constant

$$\bar{g}(t) = ge^{-t}$$
.

RG flow and duality
S.Ohya

Introduction

Star graph

S-matrix Bound states RG flow Duality

Today's talk

RG flow and duality S.Ohva

Introduction

Star graph Kirchhoff's law S-matrix Bound states

RG flow Duality

- spinless one-particle quantum mechanics on star graph
- absence of long-ranged interaction (such as Coulomb force)
- long-wavelength limit
 - \Rightarrow theory space = parameter space of U(N)

Quantum particle on a star graph

One particle quantum mechanics on star graph with N bonds

- - vertex = junction point $x_j = 0$, $\forall j$

• jth bond = jth half-line $(0 < x_i < \infty)$

• wave function

$$\psi(x) = egin{cases} \psi_1(x_1), & x \in \mathtt{1st bond}, \ dots \ \psi_N(x_N), & x \in N\mathtt{th bond}. \end{cases}$$

Schrödinger equation (in the units $\hbar = 2m = 1$)

$$H\psi(x) = E\psi(x), \quad H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2}, \quad x \neq 0$$

RG flow and duality
S.Ohya

Introduction

Star graph

S-matrix Bound states RG flow

$$\sum_{i=1}^{N} j_j(0) = 0, \quad j_j(x_j) := -i \left[\psi_j^{\prime *}(x_j) \psi_j(x_j) - \psi_j^{*}(x_j) \psi_j^{\prime}(x_j) \right]$$

RG flow and duality

S.Ohva

Introduction

Star graph

Kirchhoff's law S-matrix Bound states

RG flow

Requirement: probability conservation at the vertex

$$\sum_{j=1}^{N} j_{j}(0) = 0, \quad j_{j}(x_{j}) := -i \left[\psi_{j}^{\prime *}(x_{j}) \psi_{j}(x_{j}) - \psi_{j}^{*}(x_{j}) \psi_{j}^{\prime}(x_{j}) \right]$$

$$\Leftrightarrow \begin{pmatrix} \psi_{1}(0) \\ \vdots \\ \psi_{N}(0) \end{pmatrix}^{\dagger} \cdot \begin{pmatrix} \psi_{1}^{\prime}(0) \\ \vdots \\ \psi_{N}^{\prime}(0) \end{pmatrix} = \begin{pmatrix} \psi_{1}^{\prime}(0) \\ \vdots \\ \psi_{N}^{\prime}(0) \end{pmatrix}^{\dagger} \cdot \begin{pmatrix} \psi_{1}(0) \\ \vdots \\ \psi_{N}(0) \end{pmatrix}$$

RG flow and duality

S.Ohya

Introduction

Star graph

Kirchhoff's law S-matrix Bound states

RG flow

Kirchhoff's law for boundary conditions (1)

Requirement: probability conservation at the vertex

(L₀: arbitrary length scale (a.k.a scale anomaly))

RG flow and duality

S.Ohya

Introduction

Star graph

Kirchhoff's law S-matrix Bound states

RG flow Duality

Kirchhoff's law for boundary conditions ①

Requirement: probability conservation at the vertex

$$\sum_{j=1}^{N} j_{j}(0) = 0, \quad j_{j}(x_{j}) := -i \left[\psi_{j}^{\prime *}(x_{j}) \psi_{j}(x_{j}) - \psi_{j}^{*}(x_{j}) \psi_{j}^{\prime}(x_{j}) \right]$$

$$\Leftrightarrow \begin{pmatrix} \psi_{1}(0) \\ \vdots \\ \psi_{N}(0) \end{pmatrix}^{\dagger} \cdot \begin{pmatrix} \psi_{1}^{\prime}(0) \\ \vdots \\ \psi_{N}^{\prime}(0) \end{pmatrix} = \begin{pmatrix} \psi_{1}^{\prime}(0) \\ \vdots \\ \psi_{N}^{\prime}(0) \end{pmatrix}^{\dagger} \cdot \begin{pmatrix} \psi_{1}(0) \\ \vdots \\ \psi_{N}(0) \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} \psi_{1}(0) \\ \vdots \\ \psi_{N}(0) \end{pmatrix} - i L_{0} \begin{pmatrix} \psi_{1}^{\prime}(0) \\ \vdots \\ \psi_{N}^{\prime}(0) \end{pmatrix} \begin{vmatrix} 2 \\ \vdots \\ \psi_{N}(0) \end{vmatrix} + i L_{0} \begin{pmatrix} \psi_{1}^{\prime}(0) \\ \vdots \\ \psi_{N}^{\prime}(0) \end{vmatrix}^{2}$$

$$\Leftrightarrow \begin{pmatrix} \psi_{1}(0) \\ \vdots \\ \psi_{N}(0) \end{pmatrix} - i L_{0} \begin{pmatrix} \psi_{1}^{\prime}(0) \\ \vdots \\ \psi_{N}^{\prime}(0) \end{pmatrix} = \mathbf{U} \begin{bmatrix} \begin{pmatrix} \psi_{1}(0) \\ \vdots \\ \psi_{N}(0) \end{pmatrix} + i L_{0} \begin{pmatrix} \psi_{1}^{\prime}(0) \\ \vdots \\ \psi_{N}^{\prime}(0) \end{pmatrix} \end{vmatrix}$$

$$\Leftrightarrow \begin{pmatrix} \psi_{1}(0) \\ \vdots \\ \psi_{N}(0) \end{pmatrix} - i L_{0} \begin{pmatrix} \psi_{1}^{\prime}(0) \\ \vdots \\ \psi_{N}^{\prime}(0) \end{pmatrix} = \mathbf{U} \begin{bmatrix} \begin{pmatrix} \psi_{1}(0) \\ \vdots \\ \psi_{N}(0) \end{pmatrix} + i L_{0} \begin{pmatrix} \psi_{1}^{\prime}(0) \\ \vdots \\ \psi_{N}^{\prime}(0) \end{pmatrix} \end{bmatrix}$$

S.Ohya

RG flow and duality

Introduction
Star graph

Kirchhoff's law S-matrix Bound states

RG flow Duality

Summary

 $(U \in U(N))$

Kirchhoff's law for boundary conditions (2)

• *U(N)* family of boundary conditions

$$(\mathbb{1}-U) \begin{pmatrix} \psi_1(0) \\ \vdots \\ \psi_N(0) \end{pmatrix} -iL_0(\mathbb{1}+U) \begin{pmatrix} \psi_1'(0) \\ \vdots \\ \psi_N'(0) \end{pmatrix} = \vec{0}, \quad U \in U(N).$$

spectral decomposition of U

$$U = \sum_{i=1}^N \mathrm{e}^{ilpha_j} P_j, \quad P_j$$
 : projection operator

• *U(N)* family of boundary conditions boils down to the *N*

 $P_{j} \left[\begin{pmatrix} \psi_{1}(0) \\ \vdots \\ \psi_{N}(0) \end{pmatrix} + L_{j} \begin{pmatrix} \psi_{1}(0) \\ \vdots \\ \psi_{N}(0) \end{pmatrix} \right] = \vec{0}, \quad L_{j} := L_{0} \cot \frac{\alpha_{j}}{2}$

S.Ohva Introduction

RG flow and duality

Star graph

Kirchhoff's law S-matrix

Bound states RG flow Duality

Summary

7/17

Example: N=2 (junction of two half-lines = line)

 $\frac{1+\vec{e}_j\cdot\vec{\sigma}}{2}\left[\begin{pmatrix}\psi_1(0)\\\psi_2(0)\end{pmatrix}+L_j\begin{pmatrix}\psi_1'(0)\\\psi_2'(0)\end{pmatrix}\right]=\vec{0},\quad \vec{e}_2=-\vec{e}_1: \text{unit vector}$

Case $\vec{e}_1 = (0,0,1)$: separated subfamily $\psi_1(0) + L_1 \psi_1'(0) = 0,$

$$\psi_2(0) + L_2 \psi_2'(0) = 0.$$

- $L_{1,2} = 0 \ (\alpha_{1,2} = \pi)$: Dirichlet BC
- $L_{1,2} = \infty \ (\alpha_{1,2} = 0)$: Neumann BC

Case $\vec{e}_1 = (1,0,0)$: parity invariant subfamily

 $\psi_1(0) + \psi_2(0) + L_1(\psi_1'(0) + \psi_2'(0)) = 0,$

 $\psi_1(0) - \psi_2(0) + L_2(\psi_1'(0) - \psi_2'(0)) = 0.$

• $L_2 = 0$ ($\alpha_2 = \pi$): δ -function potential $V(x) = \frac{1}{L_1} \delta(x)$

RG flow and duality S.Ohva

Introduction Star graph Kirchhoff's law S-matrix

Bound states RG flow

S-matrix on star graph

 positive energy solution $\psi_j(x_j;k) = A_j^{\text{in}}(k)e^{-ikx_j}$

$$+A_{j}^{\mathrm{out}}(k)\mathrm{e}^{ikx_{j}}$$
 $ullet$ evolution map between

 $\begin{pmatrix} A_1^{\text{out}} \\ \vdots \\ A_{\text{out}} \end{pmatrix} = S(kL_0) \begin{pmatrix} A_1 \\ \vdots \\ A_N^{\text{in}} \end{pmatrix},$

"in-state" and "out-state":

where the S-matrix $S(kL_0)$ is given by

$$\begin{pmatrix} R_1(kL_0) & T_{12}(kL_0) & \cdots \\ T_{21}(kL_0) & R_2(kL_0) & \cdots \end{pmatrix}$$

Star graph Kirchhoff's law S-matrix **Bound states**

Introduction

RG flow and duality S.Ohva

RG flow Duality Summary

9/17

 $S(kL_0) = \begin{pmatrix} R_1(kL_0) & T_{12}(kL_0) & \cdots & T_{1N}(kL_0) \\ T_{21}(kL_0) & R_2(kL_0) & \cdots & T_{2N}(kL_0) \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1}(kL_0) & T_{N2}(kL_0) & \cdots & R_N(kL_0) \end{pmatrix} = \sum_{j=1}^N \frac{ikL_j - 1}{ikL_j + 1} P_j.$

Bound states and antibound (or virtual) states

- bound (antibound) state = simple pole of $S(kL_0)$ lying on the positive (negative) imaginary k-axis
- bound/antibound state energy at a pole $k = i/L_l$:

$$E_{B_l} = \left(\frac{i}{L_l}\right)^2 = -\frac{1}{L_l^2}$$
 (antibound states) • bound/antibound state wave function at a pole $k=i/L_l$:

(bound states)

$$egin{aligned} \psi_{B_l,j}(x_j) &\propto \exp\left(-rac{x_j}{L_l}
ight) & \left(L_l = L_0\cotrac{lpha_l}{2}, \quad L_0 > 0
ight) \ &\Rightarrow egin{cases} ext{normalizable bound state} & ext{for } 0 < lpha_l < \pi \ ext{non-normalizable antibound state} & ext{for } \pi < lpha_l < 2\pi \end{cases} \end{aligned}$$

duality S.Ohva

RG flow and

Introduction

Star graph Kirchhoff's law S-matrix **Bound states**

RG flow Duality

Rek

Phase diagram for N=2

RG flow and duality
S.Ohya

Introduction

Star graph Kirchhoff's law S-matrix

RG flow
Duality

Exact RG flow of point interaction (1)

Renormalization group transformation

Since L_0 is an arbitrary parameter, any physical quantities must be independent of the choice of L_0 . The lack of dependence of L_0 can be expressed as the invariance of the theory under the

$$R_t: L_0 \mapsto \bar{L}(t) := L_0 e^{-t}, \quad -\infty < t < \infty.$$

Renormalization group equation

Any change of L_0 must be equivalent to changes in the U(N)parameters. This is expressed as the RG equation

$$S(kL_0; \alpha_i, P_i) = S(k\bar{L}(t); \bar{\alpha}_i(t), \bar{P}_i(t)),$$

or, equivalently,

RG transformation

$$S((ke^t)L_0; \alpha_i, P_i) = S(kL_0; \bar{\alpha}_i(t), \bar{P}_i(t)).$$

S.Ohva

Kirchhoff's law

RG flow and duality

Introduction Star graph

S-matrix Bound states RG flow

Duality

Exact RG flow of point interaction (2)

Since k appears only in the combination $kL_i = kL_0 \cot \frac{\alpha_i}{2}$, the rescaling of k must be adjusted by the running of α_i :

$$kL_0 \cot \frac{\alpha_j}{2} \stackrel{k \to ke^t}{\mapsto} kL_0 \left(e^t \cot \frac{\alpha_j}{2} \right) = kL_0 \left(\cot \frac{\bar{\alpha}_j(t)}{2} \right),$$

from which we find

$$\bar{\alpha}_j(t) = 2 \arctan\left(e^{-t} \tan \frac{\alpha_j}{2}\right) \quad \text{and} \quad \bar{P}_j(t) = P_j.$$

RG flow and duality

S.Ohva

Introduction

Star graph Kirchhoff's law S-matrix Bound states

RG flow

Duality Summary

13/17

Exact RG flow of point interaction ③

exact β -function

$$\beta_{\alpha_j}(\bar{\alpha}_j(t)) := \frac{\partial \bar{\alpha}_j(t)}{\partial t} \bigg|_{\alpha_j, L_0} = -\sin \bar{\alpha}_j(t)$$

- $\alpha_i^* = 0$: UV fixed point; $\alpha_i^* = \pi$: IR fixed point
- 2^N fixed points on $T^N = \{(\alpha_1, \dots, \alpha_N) \mid 0 \le \alpha_i < 2\pi\}$

RG flow and duality
S.Ohya

Introduction
Star graph

Kirchhoff's law S-matrix Bound states

RG flow

Exact RG flow of point interaction (3)

Example: N=2

• UV (Neumann) fixed point •

$$U = S = 1$$

 $\psi'_1(0) = 0 = \psi'_2(0)$

IR (Dirichlet) fixed point

$$U = S = -1$$

 $\psi_1(0) = 0 = \psi_2(0)$

Fülöp-Tsutsui fixed point

$$U = S = \begin{pmatrix} \cos \varphi & e^{-i\theta} \sin \varphi \\ e^{i\theta} \cos \varphi & -\cos \varphi \end{pmatrix}$$

$$(e^{i\theta}\cos\varphi - \cos\varphi)$$

$$\psi_2(0) = e^{i\theta}\tan\frac{\varphi}{2}\psi_1(0), \quad \psi_2'(0) = -e^{i\theta}\cot\frac{\varphi}{2}\psi_1'(0)$$

RG flow and duality S.Ohva

Introduction Star graph Kirchhoff's law

> S-matrix Bound states RG flow

Duality

elementary identity

$$\frac{1}{\cot\frac{\alpha_j}{2}} = \tan\frac{\alpha_j}{2} = -\cot\left(\frac{\alpha_j}{2} \pm \frac{\pi}{2}\right)$$

identity of S-matrix eigenvalue

$$\frac{ikL_0\cot\frac{\alpha_j}{2} - 1}{ikL_0\cot\frac{\alpha_j}{2} + 1} = -\frac{i(kL_0)^{-1}\cot(\frac{\alpha_j}{2} \pm \frac{\pi}{2}) - 1}{i(kL_0)^{-1}\cot(\frac{\alpha_j}{2} \pm \frac{\pi}{2}) + 1}$$

identity of S-matrix

 $S(kL_0; \alpha_i, P_i) = -S((kL_0)^{-1}; \alpha_i \pm \pi, P_i)$

Introduction Star graph Kirchhoff's law S-matrix

RG flow and duality S.Ohva

Bound states RG flow Duality

Summary

- ullet Exact RG flow of U(N) family of point interactions
- ullet Duality between the systems $\{lpha_j,P_j\}$ and $\{lpha_j\pm\pi,P_j\}$
 - scattering states: high energy ⇔ low energy
 - bound state ⇔ antibound state

RG flow and duality
S.Ohva

Introduction

Star graph
Kirchhoff's law
S-matrix
Bound states

RG flow Duality