Second Law of Thermodynamics with Discrete Quantum Feedback Control T. Sagawa^A and M. Ueda^{AB} Tokyo Univ.A, ERATO-JSTB PRL 100, 080403 (2008) ## In This Talk... - Introduction - Backgrounds - History of Maxwell's Demon - Nonequilibrium Thermodynamics - Quantum Demon - Our Research - Generalized Second Law - QC-mutual Information - Conclusions ### Introduction # My Interests ... Information and Control **Quantum Theory** Statistical Mechanics #### Main researches Quantum control and thermodynamics TS and M. Ueda, PRL 100, 080403 (2008) Information processing in classical noequilibrium systems Measurement-induced uncertainty relations Y. Kurotani, TS, and M. Ueda, PRA **76**, 022325 (2007) TS and M. Ueda, PRA **77**, 012313 (2008) #### Collaborations Visualization of quantum-information flow (with Y. Watanabe) Quantum feedback control of photon number states (with S. Fujisawa) Other interests (not researches yet...) Entanglement and decoherence in many-body systems Topology and differential geometry in quantum physics #### Introduction ## Motivation Reversibility Irreversibility Nonequilibrium statistical mechanics VS. + Quantum measurement and information theory П To understand the Ir/Reversiblity interface Maxwell's demon performs quantum feedback control. I : Generalized mutual information The second law of thermodynamics $$W_{\rm ext} \leq -\Delta F$$ With Maxwell's demon $$W_{\rm ext} \leq -\Delta F + (k_{\rm B}TI)$$ We have identified the upper bound of the capacity of the demon! # Szilard Engine (1927) Does this contradict to the second law? # Brillouin's Proposal (1951) The energy cost needed for measurement is bounded as $\hbar\omega\!>\!>\!k_{\rm B}T$ However, Bennett proposed a model of measurement without energy cost. # Landauer's Principle (1961) In isothermal erasing one bit of information from the demon's memory, at least ke7ln2 of heat should be dissipated into the environment, and the same amount of work is performed on the demon. # Bennett's Proposal (1982) In a full cycle of the thermodynamic engine and the demon... # Nonequilibrium Thermodynamics for Small Systems The canonical distribution Stochastic violation of the second law ("fluctuation theorem"): $$Pr(-\sigma) \approx Pr(+\sigma) \exp(-\beta \sigma)$$ On average, however, the second law is never violated : $$\langle \sigma \rangle \geq 0$$ For small systems, $k_{\rm R}T$ of work can be measured. ## **Quantum Demons** $I_{\scriptscriptstyle \cap}(A:B)$: Initial correlation Α В $$+\Delta S(B) \ge \Delta S(A) - I_0(A:B)$$ (If $\Delta S(AB) \ge 0$) ## Oppenheim et al. (2002) Work extraction from entangled particles В A $$\Delta \equiv W_{\rm t} - W_{\rm 1}$$: a measure of entanglement! By global operations By LOCC $\Delta = S(A) = S(B)$ for pure states ## Maxwell's Demon as a Feedback Controller ## Formulation (1) Total Hamiltonian apart from the demon $$H^{S+B}(t) = H^{S}(t) + H^{int}(t) + H^{B}$$ $$H^{S+B}(t_i) \equiv H_i$$ $H^{S+B}(t_f) \equiv H_f$ # Formulation (2) **Initial Canonical Distribution** **Unitary Evolution** Measurement by the Demon Feedback by the Demon $$\boldsymbol{\rho}_{3}(\boldsymbol{k}) = \boldsymbol{U}_{k} \boldsymbol{\rho}_{2}(\boldsymbol{k}) \boldsymbol{U}_{k}^{\dagger}$$ Final state $$\boldsymbol{\rho}_{\mathrm{f}} = \sum_{k} \boldsymbol{p}_{k} \boldsymbol{U}_{\mathrm{f}} \boldsymbol{\rho}_{3}(\boldsymbol{k}) \boldsymbol{U}_{\mathrm{f}}^{\dagger}$$ ## **Classical Mutual Information** Mutual information: $I = 1 + \varepsilon \log_2 \varepsilon + (1 - \varepsilon) \log_2 (1 - \varepsilon)$ $0.8 \\ 0.6 \\ I \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.8 \\ 1$ # QC-Mutual Information (1) $$I = H + S(\rho_1) + \sum_k \operatorname{tr}\left(\sqrt{D_k} \rho_1 \sqrt{D_k} \ln \sqrt{D_k} \rho_1 \sqrt{D_k}\right)$$ $$D_k = M_k^{\dagger} M_k$$: POVM $$S(\boldsymbol{\rho}_1) = -\operatorname{tr}(\boldsymbol{\rho}_1 \ln \boldsymbol{\rho}_1)$$: von Neumann Entropy If the demon obtains no information: $$W_{\rm ext} \leq -\Delta F$$. If the measurement is error-free: $$W_{\rm ext} \leq -\Delta F + k_{\rm B} T H$$. # QC-Mutual information (2) Relationship with Holevo's χ quantity: $I=\chi-\Delta S_{ ext{meas}}$ $$\boldsymbol{\chi} = S\left(\sum_{k} p_{k} \boldsymbol{\rho}_{2}(k)\right) - \sum_{k} p_{k} S\left(\boldsymbol{\rho}_{2}(k)\right)$$: Distinguishability of the post-measurement states $$\Delta S_{\text{meas}} = S\left(\sum_{k} p_{k} \rho_{2}(k)\right) - S(\rho_{1})$$: Disturbance by the measurement If the measurement is classical... For all $$\emph{k},~~[oldsymbol{ ho}_{\!_{\! 1}},\!D_{\!_{\! k}}]\!=\!0$$ For all k, $[\rho_1, D_k] = 0$ I reduces to the classical mutual information. ## Main Result With Maxwell's demon $$W_{\rm ext} \leq -\Delta F + k_{\rm B}TI$$ We have generalized the second law of thermodynamics, which involves the term of "information" as a new thermodynamic variable. # Carnot Cycle and Szilard Engine ## Conventional heat engine: Heat → Work Heat efficiency $$e \equiv \frac{W_{ m ext}}{Q_{ m H}} \leq 1 - \frac{T_{ m L}}{T_{ m H}}$$ Carnot cycle "Information heat engine": Information → Work ## Generalization ## Summary - We have generalized the second law of thermodynamics to processes controlled by Maxwell's demon. - We have introduced the QC-mutual information. - Our result can be applied to both classical and quantum feedback. # **Future Prospects** Generalization to continuous feedback "Information thermodynamics" TS and M. Ueda, in preparation. Molecular Devices Informatic foundation of the second law # Thank you for your attention!