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1 Introduction

Two-dimensional N = 2 superconformal field theory ([1],[2],[3]) plays an important role in

the compactification of superstrings on Calabi-Yau manifolds. In order to know physical

properties of the theory compactified on such a non-trivial manifold, one should calculate

correlation functions on Riemann surfaces, which has been done partially for N = 2

minimal models [4]. As another important aspect of the N = 2 theory, the twisted N = 2

superconformal algebra provides an example of topological conformal field theory [5],

which has a remarkable agreement with two dimensional gravity coupled with minimal

matter [6].

Kazama and Suzuki have shown that a large class of unitary conformal field theories

with N = 2 superconformal symmetry can be realized as the coset model G/H, where G

is a super Kac-Moody algebra and H its subalgebra and G/H is a Hermitian symmetric

space [7]. The character of N = 2 coset model can be computed as the branching coef-

ficient of an affine Lie algebra in the GKO construction [8]. However, it is a non-trivial

problem to find the chiral algebra and to calculate correlation functions in this framework.

A different approach has been proposed, which is based on Toda field theory over H in

the case of G at level one[9]. In this model an N = 2 superconformal algebra is generated

by vertex operator type currents, which can be regarded as screening operators in some

bosonic coset models [10]. Unfortunately it is difficult to extend this approach to the case

of generic level k. The geometrical approach based on N = 2 Landau-Ginzburg model

[11] provides a powerful method to investigate the chiral ring structure of the model,

which characterize the cohomological structure of the manifold G/H. However there is

no apparent correspondence between the Landau-Ginzburg action and the G/H model at

generic level k [12].

The Feigin-Fuchs (or free field) representation ([13],[14]) provides a fundamental tool

for studying the representation of the chiral algebra and correlation functions for these
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models at generic level. The purpose of the present paper is to study N = 2 coset models

using the free field realization. In a previous paper [15] we have studied the N = 2 CPn

coset model in view of the quantum Hamiltonian reduction of affine Lie superalgebra

A(n, n − 1)(1). We also have shown that the N = 2 CPn model has an N = 2 super

W -algebra structure through the supersymmetric Miura transformation ([16],[17]). The

quantum Hamiltonian reduction of affine Lie algebra gives us a geometrical framework

to understand the W algebra structure of the minimal coset models [18]. From the

hamiltonian reduction of simply-laced affine Lie algebra ĝ at the level k = p/q − h∨ (h∨:

dual Coxeter number of g) we get (p, q) Wg coset minimal models. For the W algebra

with superconformal (or fermionic) symmetry, (affine) Lie superalgebra plays an essential

role ([16],[17],[19],[20]).

The Feigin-Fuchs representation of the Wg algebra has been studied extensively by

many authors ([21]-[24]) since Zamolodchikov and Fateev have studied the W3(= WA2)

algebra [21]. Fateev and Lukyanov have studied the Feigin-Fuchs representation of the

Wg algebras for g = An, Bn and Dn[22]. In these models Wg algebras are obtained from

the quantum Miura transformation. In the present paper we shall study the Feigin-Fuchs

representation of N = 2 superconformal CPn model by using screening operators which

commute all the generators of the N = 2 super W-algebra.

This paper is organized as follows: In section 2, we study the free field representation

of the N = 2 CPn model based on the super Lax operator associated with the Lie

superalgebra A(n, n − 1). In section 3, we construct screening operators and study the

degenerate representation of the algebra. As an application, we investigate the chiral ring

structure of the model.

2 N = 2 super W algebra

In this section we introduce the quantum Miura transformation for the N = 2 minimal

CPn model. This transformation can be derived from the Lie superalgebra A(n, n − 1)
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[25], which underlies the N = 2 super W algebra.

2.1 Lie superalgebra A(n, n − 1)

We start from the Lie superalgebra g = A(n, n − 1) = sl(n + 1, n) (n ≥ 1). The algebra

g consists of (2n + 1) × (2n + 1) matrices X = (xij) satisfying

strX ≡
2n+1∑
i=1

(−1)i+1xii = 0, (1)

and it has rank 2n. The root system of the Lie superalgebra g is composed of even

roots and odd roots, which correspond to commuting and anti-commuting generators,

respectively. Let ∆0 (∆1) be the set of even (odd) roots. For A(n, n − 1) one can choose

a purely odd simple root system, in which the simple roots α1, . . . , α2n of g are written as

α2i−1 = ei − δi, α2i = δi − ei+1, (2)

where ei (i = 1, . . . , n + 1) and δi (i = 1, . . . , n) are orthonormal basis of Rn+1 and Rn,

respectively. Rn+1 has a positive metric whereas Rn has a negative metric:

ei · ej = δij, δi · δj = −δij. (3)

We denote the set of positive roots by ∆+, which consists of

αi + · · · + αj, (i ≤ j). (4)

Here the even (odd) number sum of simple roots is even (odd). The set of negative roots

∆− is defined as (−1)∆+. The fundamental weights λ1, . . . , λ2n of g satisfy

λi · αj = δij. (5)

These are expressed in terms of αi as

λ2i = α1 + α3 + · · · + α2i−1,

λ2i−1 = α2i + α2i+2 + · · · + α2n, i = 1, . . . , n. (6)
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The Lie superalgebra A(n, n − 1) contains an even subalgebra An ⊕ An−1 ⊕ C, where

C = gl(1) is a center of g and generates a U(1) subgroup. The simple roots of even

subalgebra An are

α
(1)
i = α2i−1 + α2i = ei − ei+1, i = 1, . . . , n, (7)

and those of An−1

α
(2)
i = α2i + α2i+1 = δi − δi+1, i = 1, . . . , n − 1. (8)

Note that the root system of An−1 has negative metric. C is generated by ν:

ν =
n∑

i=1

(λ2i − λ2i−1), (9)

which has also a negative metric ν2 = −n(n + 1). Let Λ
(1)
1 , . . . , Λ(1)

n be the fundamental

weights of An and Λ
(2)
1 , . . . , Λ

(2)
n−1 be those of An−1. Using λi’s, we can construct the

fundamental weights for even subalgebra of g.

Λ
(1)
i =

2i−1∑
j=1

(−1)j−1λj +
i

n + 1
ν, i = 1, . . . , n,

Λ
(2)
i =

2i∑
j=1

(−1)jλj −
i

n
ν, i = 1, · · · , n − 1. (10)

Actually we can show that these vectors satisfy

Λ
(1)
i · Λ(1)

j =

{
1

n+1
(n + 1 − j)i, for i ≤ j,

1
n+1

(n + 1 − i)j, for i > j,

Λ
(2)
i · Λ(2)

j =

{
− 1

n
(n − j)i, for i ≤ j,

− 1
n
(n − i)j, for i > j,

(11)

and that Λ
(1)
i , Λ

(2)
j and ν are orthogonal. The highest weight of the representation of

A(n, n − 1)

Λ =
2n∑
i=1

miλi, (12)

where mi are non-negative integers, is decomposed into the sum of weights of even subal-

gebras:

Λ = Λ(1) + Λ(2) + Qν, (13)
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where

Λ(1) =
n∑

i=1

N
(1)
i Λ

(1)
i , Λ(2) =

n−1∑
i=1

N
(2)
i Λ

(2)
i , (14)

and

N
(1)
i = m2i + m2i−1, N

(2)
i = m2i + m2i+1,

Q =
1

n(n + 1)

n∑
i=1

(im2i − (n + 1 − i)m2i−1). (15)

These relations are crucial to establish the relation between the Lie superalgebra A(n, n−

1) and the N = 2 CPn model.

2.2 Super Lax operator

In a previous paper we have discussed the quantum Hamiltonian reduction of the affine

Lie superalgebra A(n, n− 1)(1) and have shown that the N = 1 super Lax operator based

on A(n, n − 1) characterize the chiral algebra structure of the N = 2 CPn model [15].

Here we present a detailed analysis of the N = 2 super W algebra structure.

In the following we use the N = 1 superspace formalism. The super coordinate is

denoted by Z = (z, θ) and the super derivative by D = ∂
∂θ

+ θ ∂
∂z

. Let ϕi(z) and χi(z)

(i = 1, . . . , 2n) be free bosons and real fermions which satisfy

ϕi(z)ϕj(w) = −δij log(z − w) + · · · , χi(z)χj(w) =
δij

z − w
+ · · · . (16)

We define scalar superfields Φ(Z) by ϕ(z) + iθχ(z).

Let us consider the scalar super Lax operator L(Z) ([16],[17]):

L(Z) =: (aD − Θ2n+1(Z))(aD − Θ2n(Z)) · · · (aD − Θ1(Z)) :, (17)

where

Θi(Z) = (−1)i−1hi · DΦ(Z), (18)

a = −iα+, hi = λi − λi−1 (i = 1, . . . , 2n + 1), and λ0 = λ2n+1 = 0. The symbol : : means

normal ordering. Expanding L(Z) in powers of aD, we get the generators of N = 2 super
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W -algebra, Wk/2(Z) (k = 0, . . . , 2n + 1):

L(Z) =
2n+1∑
k=0

W k
2
(Z)(aD)2n+1−k. (19)

We show first few examples of the currents: Obviously W0(Z) is equal to 1. W 1
2
(Z) is

shown to be
∑2n+1

i=1 hi · DΦ, which vanishes. The next two currents are those of N = 2

superconformal algebra:

W1(Z) =
2n∑
i=1

(−λi+1 · DΦλi · DΦ + a(−1)iλi · D2Φ),

W 3
2
(Z) = a

{ n∑
i=1

(−λ2i−1 · DΦα2i−1 · D2Φ − aλ2i−1 · D3Φ)
}
. (20)

In the component formalism they are expressed as

W1(Z) = J(z) + iθ(G+(z) + G−(z)), (21)

1

a
W 3

2
(Z) = iG−(z) + θ(T (z) +

1

2
∂J(z)), (22)

where

J(z) =
n∑

i=1

λ2i · χα2i · χ − iα+ν · ∂ϕ,

G+(z) =
n∑

i=1

(α2i · ∂ϕλ2i · χ − iα+λ2i · ∂χ),

G−(z) = −
n∑

i=1

(α2i−1 · ∂ϕλ2i−1 · χ − iα+λ2i−1 · ∂χ),

T (z) = −1

2
(∂ϕ)2 + iα+µ · ∂2ϕ − 1

2

2n∑
i=1

χi∂χi, (23)

and

µ =
1

2

2n∑
i=1

λi. (24)

Formulas (20) imply that the apparent N = 1 superconformal symmetry which we use in

order to introduce the superspace, is generated by (G+ + G−)/
√

2. We can show easily

that these currents satisfy the operator product expansion of the N=2 superconformal
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algebra:

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
+ · · · ,

T (z)J(w) =
J(w)

(z − w)2
+

∂J(w)

z − w
+ · · · ,

T (z)G±(w) =
3
2
G±(w)

(z − w)2
+

∂G±(w)

z − w
+ · · · ,

J(z)J(w) =
c/3

(z − w)2
+ · · · ,

J(z)G±(w) =
±G±(w)

z − w
+ · · · ,

G+(z)G−(w) =
c/3

(z − w)3
+

J(w)

(z − w)2
+

T (w) + 1
2
∂J(w)

z − w
+ · · · , (25)

with the central charge c:

c = 3n(1 − (n + 1)α2
+). (26)

It is convenient to introduce a symplectic basis {α2i, λ2i} (i = 1, . . . , n) for the root

space in order to express the N = 2 generators in terms of n complex bosons and n

complex fermions defined as ϕi(z) = λ2i · ϕ(z), ϕ̄i(z) = α2i · ϕ(z), χi(z) = λ2i · χ(z) and

χ̄i(z) = α2i ·χ(z). Using these fields, generators of the N = 2 superconformal algebra are

expressed as

J(z) =
n∑

i=1

χiχ̄i − iα+

n∑
i=1

(∂ϕi − i∂ϕ̄i),

G+(z) =
n∑

i=1

(∂ϕ̄iχi − iα+∂χi), G−(z) = −
n∑

i=1

(∂ϕiχ̄i − iα+i∂χ̄i),

T (z) =
n∑

i=1

{−∂ϕi∂ϕ̄i +
iα+

2
∂2(ϕi + iϕ̄i) −

1

2
(χi∂χ̄i + χ̄i∂χi)}. (27)

Note that for n = 1 we get the usual free field realization of N = 2 minimal model ([2],[3]).

This kind of the free field realization has also been obtained in ref. [26], in a different

approach.

Next we proceed to other W currents with spins larger than or equal to two. A general
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formula of the current is given by

W k
2
(Z) =

∑
1≤l1<···<lk≤2n+1

(−1)
∑[ k

2 ]
i=1 (l2i−l2i−1−1)(aD − Θlk) · · · (aD − Θl2)(−Θl1). (28)

After a suitable redefinition by adding some differential polynomials of the W currents

with lower dimensions, they form an N = 2 supermultiplet ( W 0
i (z), W+

i (z),W−
i (z),

W 2
i (z) ) (i = 1, · · · , n) with conformal weights (i, i + 1/2, i + 1/2, i + 1) and U(1) charges

(0, 1,−1, 0), respectively.

At the classical level the commutation relation for the W currents is interpreted as

the Gelfand-Dickii algebra constructed from an appropriate affine Lie (super)algebra[27].

Recently it has been shown that the classical N = 2 W -algebra can be obtained from affine

Lie superalgebra A(n, n)(1) [28]. The relation between the present construction based on

the Lie superalgebra A(n, n− 1) and that based on the affine Lie superalgebra A(n, n)(1)

is not clear. Slightly different formulations of the classical N = 2 super W -algebra have

been proposed in refs. [29] and [30].

In order to proceed to the quantum case, we should generalize Lukyanov’s approach

[23] to the Lie superalgebra case. In the present paper, we do not study a detailed

algebraic structure of the N = 2 W−algebra. In the case of n = 2 there are two N = 2

supermultiplet (J(z), G+(z), G−(z), T (z)) and (W 0
2 (z),W+

2 (z),W−
2 (z), W 2

2 (z)). From the

super Miura transformation (17), the N = 2 supermultiplet containing W 0
2 (z) is expressed

as:

W2(Z) = U (1)U (2) + aDΦ̄2V
(1) − aD2Φ̄2U

(2) − aD3Φ̄2, (29)

W5/2(Z) = U (1)V̄ (2) + U (2)V̄ (1) + a2D2V̄ (1) − aDΦ̄2DV (1) − aU (2)D3Φ̄2 − a3D5Φ̄2,

where Φi ≡ λ2i · Φ, Φ̄i ≡ α2i · Φ,

U (i)(Z) = DΦ2iDΦ̄2i − aD2(Φ2i − Φ̄2i),

V̄ (i)(Z) = −D2Φ2iDΦ̄2i − aD3Φ̄2i, V (i)(Z) = DU (i) − V̄ (i), (30)
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for i = 1, 2. One can show that these form an N = 2 supermultiplet by an explicit calcu-

lation. Moreover one finds that W 0
2 (z)W 0

2 (w) closes. Other operator product expansions

and the generalization to the case of arbitrary n is presently under investigation and will

be reported elsewhere1 .

3 Degenerate representation

In this section we study the complete degenerate representation using the free field real-

ization of the N=2 CPn model. Let us consider a vertex operator of the form

VΛ(z) = e−iα+Λ·ϕ(z), (31)

which has a conformal weight ∆Λ and a U(1) charge q:

∆Λ =
α2

+

2
Λ · (Λ + 2µ), (32)

q = −α2
+Λ · ν. (33)

Let {V 0
Λ (z), V +

Λ (z), V −
Λ (z), V 2

Λ (z)} be a N=2 supermultiplet from VΛ(z):

V 0
Λ (z) = e−iα+Λ·ϕ(z),

V +
Λ (z) = iα+Λ0 · χe−iα+Λ·ϕ(z), V −

Λ (z) = iα+Λ1 · χe−iα+Λ·ϕ(z),

V 2
Λ (z) =

{
α2

+Λ0 · χΛ1 · χ +
1

2
iα+(Λ1 − Λ0) · ∂ϕ

}
e−iα+Λ·ϕ(z), (34)

where we define Λ0 and Λ1 for Λ =
∑2n

i=1 miλi as

Λ0 =
n∑

i=1

m2iλ2i, Λ1 =
n∑

i=1

m2i−1λ2i−1. (35)

1 After the completion of the present work, we have learned that the closure of N = 2 WA(2, 1) has
been established in [31]. Another construction of the N = 2 WA(2, 1)-algebra is proposed, based on the
OPE method, in [32].
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3.1 W charge and global symmetry

Here we compute the W charges wk/2(Λ) (k = 0, · · · 2n + 1) for a primary field VΛ(Z).

They are defined by the operator product expansions with Wk/2(Z):

Wj(Z1)VΛ(Z2) =
wj(Λ)VΛ(Z2)

Zj
12

+ less singular terms,

Wj−1/2(Z1)VΛ(Z2) =
θ12wj−1/2(Λ)VΛ(Z2)

Zj
12

+ less singular terms, (36)

where Z12 = z1 − z2 − θ1θ2 and θ12 = θ1 − θ2. Inserting this expression into eqs. (19) and

using

(aD1 − Θj(Z1))VΛ(Z2) = (aD1 +
aθ12(−1)j−1hj · Λ

Z12

)VΛ(Z2) + · · · , (37)

for (17), we get

n∑
j=0

(
wj(Λ)

Zj
12

(aD1)
2n+1−2k +

wj−1/2(Λ)θ12

Zj
12

(aD1)
2n−2k)

= (aD1 +
θ12h2n+1 · Λ

Z12

) · · · (aD1 +
θ12h1 · Λ

Z12

). (38)

Applying this equation to monomials Zj
12 and θ12Z

j
12 (j = 0, . . . , 2n+1), we get the system

of linear equations for the W charges:

n∑
k=n−j+1

(j + 1)!

(j + 1 − n + k)!
a2n−2kwk+ 1

2
(Λ) = a2n+1

n∏
m=0

(j − m + 1 + h2m+1 · Λ)

−(j + 1)a2n+1
n∏

m=1

(j − m + 1 − h2m · Λ),

n∑
k=n−j

a2n+1−2k j!

(j − n + k)!
wk(Λ) = a2n+1

n∏
m=1

(j − m + 1 − h2m · Λ). (39)

This means that the W charges wk/2 are invariant under the following discrete transfor-

mations:

−m + h2m · Λ = −m′ + h2m′ · Λ,

−m + h2m+1 · Λ = −m′′ + h2m′′+1 · Λ, (40)
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where m′ and m′′ are obtained from the numbers m = (1, . . . , n) by some permutations.

From the relation (10) we get

h2m = Λ(2)
m − Λ

(2)
m−1 +

ν

n
,

h2m+1 = Λ
(1)
m+1 − Λ(1)

m − ν

n + 1
. (41)

Therefore the discrete symmetry mentioned above is nothing but the outer automorphism

of even subalgebras An and An−1, which is that of the Lie superalgebra A(n, n− 1). This

symmetry determines the identification of vertex operators which represent a primary

field of the N = 2 W algebra. From this discrete symmetry we may calculate the fusion

rules for the N = 2 CPn models, which will be discussed elsewhere.

3.2 Screening operators

In order to study the representation of the algebra by using the free field realization,

we must introduce screening operator which commutes with the generators of the chiral

algebra of the model. In the present case the screening operator S(z) is defined as

W a
i (z)S(w) =

∂

∂w
(
∑
j≥0

S ′
j(w)

(z − w)j
) + . . . , a = 0, +,−, 2, i = 1, . . . , n. (42)

where S ′
j(w) are local operators. Although we leave the closure of the N = 2 super

W -algebra for arbitrary n for the future work, we can calculate the screening operator

S(Z) = S0(z) + θS(z) which commutes with the super Lax operator L(Z):

L(Z1)S(Z2) =
2n+1∑
k=0

D2(Xk)(aD1)
2n+1−k + · · · , (43)

where S0(z) is a superpartner of S(z) and Xk take the form of operator product expan-

sions. Using the super Miura transformation (19) and comparing both sides of of eq. (43)

with respect to θ2, one finds (43) is equivalent to (42).

We note that the N = 2 minimal models have three screening operators[2], [3]:

S+
1 (z) = χ(z)eiα−ϕ(z), S+

2 (z) = χ̄(z)eiα−ϕ̄(z),

S−(z) = (α2
+χχ̄(z) +

1

2
iα+(∂ϕ̄ − ∂ϕ))eiα+(ϕ+ϕ̄)(z), (44)
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where α− = −1/α+. The first two are fermionic screening operators which come from the

hamiltonian reduction of A(1, 0)(1) ([33],[15]), which characterize the Lie superalgebraic

structure of the model. The remaining bosonic screening operator is used to determine

the A
(1)
1 structure of the model since the N = 2 minimal model is obtained from the

marginal deformation of SL(2) Wess-Zumino-Novikov-Witten model [34]. In the coset

realization of the N = 2 minimal model CP1 = SU(2)/U(1) the screening operator S−(z)

is thought to characterize the structure of SU(2).

We will show that this observation can be generalized to arbitrary n. Actually we

can find three types screening operators for the N = 2 coset model SU(n + 1)/SU(n) ×

U(1). One is fermionic screening operator which comes from the Hamiltonian reduction

of A(n, n − 1)(1) and take the form [15]:

Sj(z) = αj · χeiα−αj ·ϕ(z), j = 1, . . . , 2n, (45)

where α− = −1/α+. Other two types are used for the characterization of SU(n + 1) and

SU(n) structure of the model. They are expressed as

S1
i (z) = {α2

+α2i−1 · χα2i · χ +
1

2
iα+(α2i − α2i−1) · ∂ϕ}eiα+(α2i+α2i−1)·ϕ(z), (46)

for i = 1, . . . , n and

S2
i (z) = {α2

+α2i+1 · χα2i · χ +
1

2
iα+(α2i − α2i+1) · ∂ϕ}e−iα+(α2i+α2i+1)·ϕ(z), (47)

for i = 1, . . . , n − 1. We can show these operators commute with the super Lax operator

L(Z). For the fermionic screening operator Sj(z), which has a supersymmetric form

exp(iα−αj · Φ(Z)), it is easily shown that

(aD1 − Θj+1(Z1)(aD1 − Θj(Z1))e
iα−αj ·Φ(Z2) = D2(

θ12e
iα−αj ·Φ(Z2)

Z12

) + · · · . (48)

Other (aD1 − Θj′(Z1)) does not produce the singular part. Therefore Sj(z) commutes

with the whole generators of the N = 2 super W algebra. For the bosonic screening
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operator S1
i (z), which has a supersymmetric form S1

i (Z) = (α2i − α2i−1) · DΦV−α
(1)
i

(Z),

we find

(aD1 − Θ2i+1(Z1))(aD1 − Θ2i(Z1))(aD1 − Θ2i−1(Z1))S
1
i (Z2)

= D2(
θ12(−aΛ · DΦ)V−α

(1)
i

Z12

)aD1

+aD2

{α2i · DΦ

Z12

V−α
(1)
i

+
θ12

Z12

[(α2i − α2i−1) · D2Φ + 2aα2i−1 · DΦα2i · DΦ

−α2i · DΦh2i−1 · DΦ + h2i+1 · DΦα2i−1 · DΦ]V−α
(1)
i

}
+ · · · . (49)

Hence the operator product expansion between the super Lax operator L(Z) and S1
i (Z)

takes the form of (43). In a similar way we can show that S2
i commutes with the generators

of the N = 2 super W -algebra.

3.3 Null field construction

Let ΦΛ(z) be a primary fields with the W charges wk/2(Λ) given by the formula (39).

[ΦΛ] is a Verma module with the highest weight Λ built on ΦΛ(z). In the Feigin-Fuchs

representation we treat the Fock module [VΛ] built on a vertex operator VΛ(z). [V−2µ−Λ]

is a dual Fock space to [VΛ]. Due to Zn × Zn−1 symmetry, we identify [VΛ] with [VΛ∗ ],

where Λ∗ is obtained by the permutation of (Λ
(1)
1 , . . . , Λ(1)

n ) or (Λ
(2)
1 , . . . , Λ

(2)
n−1) in Λ. In

the following we consider the case α2
+ = 1/(k + n + 1), which gives the central charge

c =
3kn

k + n + 1
, (50)

of the N = 2 CPn coset model. In order to study the degenerate representation of the

algebra, we must find a null field χΛ(z) in [VΛ], which can be constructed explicitly by

applying screening operators S(z) to an appropriate vertex operator VΛ′(z):

χΛ(z) =
∫

du1 · · · durS(u1) · · ·S(ur)VΛ′(z), (51)

where contours of the integration are taken as, for example, ref. [35]. If the above integral

exist non-zero, χΛ(z) becomes a null field and [χΛ] generates a submodule in [VΛ].
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In the present case we can construct three types of null fields in the Fock module [VΛ]

from screening operators Sj(z), S1
i (z) and S2

i (z). For the fermionic screening operator

Sj(z) a null field is expressed as

χΛ(z) =
∫

duSj(u)VΛ′(z),

=
∫

du(u − z)αj ·Λ′
: χ(u)eiα−αj ·ϕ(u)−iα+Λ′·ϕ(z), (52)

where Λ′ = −2µ − Λ + αj/α
2
+. The non-zero existence of the above integral requires

−αj · Λ − 1 = −Nj, (53)

where Nj is a positive integer. In this case χΛ(z) is a null field in [V−2µ−Λ] at level Nj.

From eq. (53) we get

Λ =
2n∑
i=1

(Ni − 1)λi. (54)

For the bosonic screening operator S1
i (z), we get results similar to the WAn algebra [22].

The null field is expressed as

χΛ(z) =
∫

du1 · · · duri

ri∏
j=1

S1
i (uj)VΛ′(z), (55)

with Λ′ = −2µ − Λ + rα
(1)
i . The non zero existence of χΛ(z) requires

α2
+ri(ri − 1) − riα

2
+α

(1)
i · Λ′ = −risi, (56)

where si is a positive integer. In this case χΛ(z) is a null field in [V−2µ−Λ] at level risi.

Hence we get

Λ =
n∑

i=1

{−ri +
si

α2
+

}Λ(1)
i . (57)

Similarly, for screening operators S2
i (z), the highest weight takes the form

Λ =
n−1∑
i=1

{−r′i −
s′i
α2

+

}Λ(2)
i , (58)

for positive integers r′i and s′i. Next we consider the U(1) current. Let us bosonize the

U(1) current:

J(z) = i

√
c

3
∂Φ, (59)
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where Φ(z) is a free boson compactified on a circle with radius

R =

√
c

3
=

√
k + n + 1

kn
. (60)

A primary field is expressed by the vertex operator

exp(
imΦ√

kn(k + n + 1)
), m : integer, (61)

which has a U(1) charge

q =
m

k + n + 1
. (62)

Combining these results, a primary field VΛ(z) should have the weight

Λ =
n∑

i=1

l
(1)
i Λ

(1)
i +

n−1∑
i=1

l
(2)
i Λ

(2)
i + Qν, (63)

with

l
(1)
i = −ri + si(k + n + 1), i = 1, . . . , n,

l
(2)
i = −r′i − s′i(k + n + 1), i = 1, . . . , n − 1,

Q =
−m

n(n + 1)
. (64)

Finally we consider the fermion sector which represents affine Lie algebra SO(2n) at level

one, since the N = 2 G/H model is equivalent to the bosonic one G×SO(2dim(G/H))/H.

It is convenient to bosonize complex fermions χi(z) and χ̄i(z) such as

χi(z) = eiφi(z), χ̄i(z) = e−iφi(z), i = 1, . . . , n. (65)

The primary field takes the form:

eiΛ̃·φ, (66)

where Λ̃ is a weight of SO(2n). From (31) and (66), we get the primary field of the N = 2

CPn minimal model:

VΛ,Λ̃(z) = eiΛ̃·φ(z)e−iα+Λ·ϕ(z). (67)
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Actually the conformal dimension ∆Λ,Λ̃ and the U(1) charge q of VΛ,Λ̃(z) are given as

∆ =
Λ(1)(Λ(1) + 2ρ(1)) + Λ(2)(Λ(2) + 2ρ(2))

2(k + n + 1)
− m2

2n(n + 1)(k + n + 1)
+

1

2
Λ̃2, (68)

q =
m

k + n + 1
+

n∑
i=1

Λ̃i, (69)

where we use the following formula

µ = ρ(1) + ρ(2), (70)

and ρ(1) and ρ(2) are the Weyl vectors of the even subalgebras An and An−1, respectively:

ρ(1) =
n∑

i=1

Λ
(1)
i , ρ(2) =

n−1∑
i=1

Λ
(2)
i . (71)

These formula shows that the present model is nothing but the N = 2 CPn coset model[7].

3.4 Chiral ring structure

As an application of the present free field realization, we study the chiral ring structure of

the N = 2 CPn model. First we review that of the N = 2 G/H coset model [12]. For the

integrable highest weight Λ of the affine Lie algebra ĝ of a Lie group G and an element w

of the Weyl group W (G) of the Lie algebra g of G, a chiral primary field CΛ
w is expressed

as

CΛ
w = ψwGΛ

w−1(Λ), (72)

where

ψw =
∏

α∈∆+(G/H)∩w−1(∆−)

ψα, (73)

and GΛ
λ is a primary fields with weight λ in the representation of ĝ with the highest weight

Λ. Here (ψα, ψ−α) (α ∈ ∆+(G/H)) are complex fermions which represents the affine Lie

algebra SO(2dim(G/H)) at level one.

In the case of the N = 2 CPn coset model, ∆+(G/H) = {α1 + · · ·+αi, i = 1, . . . , n}.

We may identify χi and χ̄i as ψα1+···+αi and ψ−(α1+···+αi), respectively. Let us consider
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the structure of the bosonic part which is characterized by the representation of ĝ = A(1)
n .

Let VΛ(z) be a bosonic part of the chiral primary field, which satisfies

G+(z)VΛ(w) = regular. (74)

This implies V +
Λ is equal to zero. From (34) we find Λ0 = 0. Therefore Λ is expressed

as
∑n

i=1 m2i−1Λ2i−1. From (15) Λ is given in terms of the weights of even subalgebra

(Λ(1), Λ(2), Q) such as

Λ(1) =
n∑

i=1

liΛ
(1)
i , Λ(2) =

n−1∑
i=1

li+1Λ
(2)
i ,

Q =
−1

n(n + 1)

n∑
i=1

(n + 1 − i)li. (75)

Hence the chiral primary field can be characterized by the weight of the even subalgebra

An. Note that the U(1) charge take the form

q =
(n + 1)Λ

(1)
1 · Λ(1)

k + n + 1
. (76)

Hence the conformal weight ∆Λ and U(1) charge q are invariant under the Weyl reflection

corresponding to the root α
(1)
i + · · · + α

(1)
j (2 ≤ i ≤ j ≤ n). Combining this and the

discrete automorphism Zn+1 of A(1)
n , we find that the number of chiral primary fields of

N = 2 CPn model is given by

1

| Zn+1 |
Nk

An

| W (An) |
| W (An−1) |

, (77)

where Nk
An

is the number of the integrable highest weights of A(1)
n at level k. This agree

with the result of [12]. The free field realization provides an explicit construction of the

chiral primary fields in a rather simplified manner. This would be useful to investigate

correlation functions among chiral primary fields on Riemann surfaces.

4 Conclusions and discussion

In the present paper we have studied the Feigin-Fuchs representation of the N = 2

superconformal CPn model. We have constructed the fermionic and bosonic screening
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operators which commute with the N = 2 super W algebra. The fermionic screening

operators characterize the Lie superalgebraic structure of the N = 2 CPn model. On the

other hand, the bosonic ones characterize the coset structure of the model. Using these

operators we have investigated the null field structure of the N = 2 CPn model.

There still remain a few problems to be solved, such as the computation of correlation

functions, characters, fusion rules etc. Concerning the character, it is a fundamental

technique to introduce Felder’s BRST cohomological structure among the space of Fock

modules[37]. For the N = 2 CPn model we can take fermionic screening operators as the

BRST operators

Qj =
∫

dzSj(z), (78)

as in the case of the N = 2 minimal models [3],[38]. These operators satisfy

Q2
i = 0,

QiQj + εijQjQi = 0, (79)

where εij = exp(±iπα−2
+ ) for j = i ± 1 and 1 otherwise. Qi defines a map between

[V−2µ−Λ+αi/α2
+
] to [V−2µ−Λ]. If ∆Λ < ∆Λ−αi/α2

+
, for the state v in KerQi, there is a state v′

such that

v = Qiv
′. (80)

Therefore Qi defines a BRST cohomology in the Fock spaces. Using this we can compute

the character formula for the N = 2 CPn model. For n = 2 we get a result similar to

that obtained from the branching coefficient of the affine Lie algebra[36]. However the

precise relation between the two results is not clear. A detailed analysis will be presented

elsewhere.

Note that in the Kazama-Suzuki models there is a kind of duality relation such as

• CPn model at level 1 ≡ CP1 model at level n.
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• CPn model at level k ≡ a Grassmannian coset model SU(n + k)/SU(n)× SU(k)×

U(1) at level 1.

The present Feigin-Fuchs representation provides a new kind of free field representation

for these coset models. In particular this means that the An type N = 2 minimal series

might have an extended algebraic structure, although at first sight this is not manifest by

looking at the character for these models.

It is worth noting that the present N = 2 W -algebra structure also appears in the

topological SL(n,R) gravity[39]. Hence it is natural to consider the topological SL(n,R)

gravity coupled with the twisted N = 2 CPn model as a generalization of [6]. We expect

that this model would describe the non-perturbative aspect of the two-dimensional W

gravity coupled with the W minimal matter.

It is important to generalize the present Feigin-Fuchs representation to other types of

Kazama-Suzuki models. A class of such free field realizations has been found in a non-Lie

algebraic approach in ref. [26]. A geometrical viewpoint for the construction of the free

field realization, is clearly desirable to understand the integrability property and the chiral

algebra structure of these models.
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