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ABSTRACT

We study the quantum Hamiltonian reduction of the affine Lie superalgebra A(n, n −
1)(1) = sl(n + 1, n)(1) (n ≥ 1), whose central charge is zero. After a BRST gauge fixing
the model has a W algebra structure with N = 2 superconformal symmetry. We show
that this model is the N = 2 coset model CPn = SU(n + 1)/SU(n) × U(1) constructed
by Kazama and Suzuki. We also discuss a topological field theoretical aspect of the
SL(n + 1, n) Wess-Zumino-Novikov-Witten model.
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Quantum Hamiltonian reduction of Wess-Zumino-Novikov-Witten (WZNW) models

is a useful method for the characterization of the chiral algebra structure of rational con-

formal field theories [1]. For a simply-laced affine Lie algebra ĝ one can get a Wg-minimal

coset model ĝk × ĝ1/ĝk+1 [2]. For non-simply-laced affine Lie algebras the corresponding

models are (quantum) Toda field theories based on the algebras but are not the coset

models. In the previous paper the author has shown that the hamiltonian reduction of

the affine Lie superalgebra B(0, n)(1) provides the WB-minimal coset model [3].

Recently extended superconformal algebras and the super integrable structure based

on (affine) super-Toda field theories have been studied ([4-6]). For the construction of

extended superconformal algebras Lie superalgebra [7] play an essential role. N = 2

superconformal algebras are particularly interesting both in view of studying the com-

pactification of superstrings and in connection with topological conformal field theories

[8]. In a slightly different approach it has been shown that a large class of rational

conformal field theories with N = 2 superconformal symmetry can be realized as coset

models of super Kac-Moody algebras, as constructed by Kazama and Suzuki [9]. How-

ever their chiral algebra structure is not understood; only a free field realization of the

energy-momentum tensor is known [10].

In this note we will show that the N = 2 coset model SU(n + 1)/SU(n) × U(1)

(so called CPn model) can be obtained by the quantum Hamiltonian reduction of the

affine Lie superalgebra A(n, n − 1)(1) = sl(n + 1, n)(1). We will also show that the chiral

algebra of the N = 2 CPn model is the N = 2 super-W algebra. We will get screening

operators, which make it possible to analyze the null field structure of the Fock module

and correlation functions.

An interesting point is that the central charge of the SL(n + 1, n) WZNW model

is zero. This observation allows us to interpret these models as topological conformal

field theories in the sense that the energy-momentum tensor is Q-exact with a nilpotent

fermionic symmetry Q. We will show that this symmetry is generated by a fermionic
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Kac-Moody current.

We begin by discussing the free field realization of the affine Lie superalgebra and its

quantum Hamiltonian reduction. Let g be a complex Lie superalgebra [7]. The set ∆ is a

root system of g and is expressed as the sum of the set of even roots ∆0 and that of odd

roots ∆1. ∆0
+ (∆1

+) represents the set of positive even (odd) roots. g may be expressed

as the direct sum g0 ⊕ g1, where g0 is generated by the Cartan part and the even roots,

g1 is spanned by the odd roots.

In the previous paper [3] we have discussed the Feigin-Fuchs representation of an affine

Lie superalgebra ĝ. The algebra is generated by the fermionic currents jα(z) (α ∈ ∆1),

the bosonic currents Jα(z) (α ∈ ∆0) and H i(z) (i = 1, . . . , r) corresponding to the Cartan

part, where r is the rank of g. To obtain the Feigin-Fuchs representation, we must

introduce bosonic ghosts (βα, γα) for the positive even roots α ∈ ∆0
+ and fermionic ghosts

(ηα, ξα) for the positive odd roots α ∈ ∆1
+, with conformal weights (1, 0), respectively,

and free bosons ϕ = (ϕ1, . . . , ϕr) coupled to the world sheet curvature. Their nontrivial

operator product expansions are given as:

ϕi(z)ϕj(w) = −δijln(z − w) + · · · , i, j = 1, . . . , n,

βα(z)γα′(w) =
δα,α′

z − w
+ · · · , for α, α′ ∈ ∆0

+,

ηα(z)ξα′(w) =
δα,α′

z − w
+ · · · , for α, α′ ∈ ∆1

+, (1)

The energy-momentum tensor takes the form:

TWZNW (z) = −1

2
(∂ϕ)2 − iρ · ∂2ϕ

α+

+
∑

α∈∆0
+

βα∂γα −
∑

α∈∆1
+

ηα∂ξα, (2)

where α+ =
√

k + h∨, k is the level of ĝ, h∨ is the dual Coxeter number of g, ρ is half the

sum of positive roots defined as

ρ =
1

2
(

∑
α∈∆0

+

α −
∑

α∈∆1
+

α). (3)
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Using the Freudenthal-de Vries strange formula for the Lie superalgebra, ρ2 = h∨sdim g/12

[11], we get the central charge of the algebra

c =
k sdim g

k + h∨ , (4)

where sdim g = dimg0 − dimg1 is the super dimension of g. A list of the central charge

for the classical type of affine Lie superalgebras is shown in table 1.

Next we discuss the quantum Hamiltonian reduction of the affine Lie superalgebra ĝ.

In the present paper we consider the affine Lie superalgebra A(n, n − 1)(1). In this case

there is an ambiguity for the choice of simple roots of g and, as a consequence, the choice

of the Dynkin diagram of the Lie superalgebra g. For the algebra A(n, n− 1) we can take

purely odd roots as the simple roots of g.

We start from the simplest example, g = A(1, 0). This superalgebra is isomorphic

to C(2) = osp(2, 2). In this case we get N = 2 minimal superconformal models after a

quantum Hamiltonian reduction [12]. Let e1, e2 and δ1 be the orthonormal basis, where

ei have a positive definite metric but δ1 has a negative one: (ei, ej) = δi j, (δ1, δ1) = −1.

Using these basis, the simple roots of A(1, 0) are expressed as α1 = e1−δ1 and α2 = δ1−e2.

The remaining positive root is an even one: α1 + α2 = e1 − e2. Half the sum of positive

roots becomes zero.

We now turn to the construction of the Feigin-Fuchs representations. In the case

of A(1, 0)(1), we need two free bosons ϕ(z) = (ϕ1(z), ϕ2(z)) associated with the Cartan

part, and two pairs of the fermionic ghosts (ηi, ξi) (i = 1, 2) and a pair of bosonic ghost

(β12, γ12), associated with the odd roots αi and the even root α1 + α2. The Kac-Moody

currents of A(1, 0)(1) is expressed as

j−α1(z) = η1 −
ξ2

2
β12, j−α2(z) = η2 −

ξ1

2
β12, J−α1−α2(z) = β12,

jα1(z) = −(k +
1

2
)∂ξ1 − ξ1iα+α1∂ϕ − (γ12 −

ξ1ξ2

2
)ξ2 +

γ12ξ1

2
β12,

jα2(z) = −(k +
1

2
)∂ξ2 − ξ2iα+α2∂ϕ − (γ12 +

ξ1ξ2

2
)ξ1 +

γ12ξ2

2
β12,
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Jα1+α2(z) = −k + 1

2
∂(ξ1ξ2) + k∂γ12 + iα+α1 · ∂ϕ(γ12 +

ξ1ξ2

2
)

+iα+α2 · ∂ϕ(γ12 −
ξ1ξ2

2
) − γ12ξ1η1 − γ12ξ2η2 − γ2

12β12,

Ha(z) = −iα+∂ϕa + αa
1ξ1η1 + αa

2ξ2η2 + (α1 + α2)
aγ12β12, (a = 1, 2). (5)

The operator product expansions for these currents take the form:

j±α1(z)j±α2(w) =
±J±(α1+α2)(w)

z − w
+ · · · ,

jαi
(z)j−αi

(w) =
−k

(z − w)2
+

−αi · H(w)

z − w
+ · · · , for i = 1, 2,

Jα1+α2(z)J−α1−α2(w) =
k

(z − w)2
+

(α1 + α2) · H(w)

z − w
+ · · · , (6)

The screening currents are given as

Sα1(z) = (η1 +
1

2
ξ2β12)e

iα−α1·ϕ, Sα2(z) = (η2 +
1

2
ξ1β12)e

iα−α2·ϕ. (7)

The Sugawara form of the energy-momentum tensor is

T (z) = −1

2
(∂ϕ)2 + β12∂γ12 − η1∂ξ1 − η2∂ξ2. (8)

In order to get the N = 2 minimal model, we must consider the second class constraints

as discussed in ref. [12]. We deform the energy-momentum tensor by the Cartan part

such as

Tdeformed(z) = TWZNW (z) − ρ0 · ∂H(z),

where ρ0 is half the sum of even positive roots, which is equal to (α1 + α2)/2. Under

this deformation the currents j−α1(z) and j−α2(z) have conformal dimension 1/2 and

Jα1+α2(z) has zero. Introducing the fermionic auxiliary fields χ(z) and χ̄(z), we can put

the constraints:

j−α1(z) = χ(z), j−α2(z) = χ̄(z), J−α1−α2(z) = −1. (9)

The operator product expansion

j−α1(z)j−α2(w) =
−J−α1−α2(w)

z − w
+ · · · , (10)
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requires a condition for the fields χ and χ̄: χ(z)χ̄(w) = 1/(z −w) + · · · . This means that

the fermionic fields χ and χ̄ can be interpreted as the complex fermions. After the BRST

gauge fixing by introducing ghost and anti-ghost fields [1], the total energy-momentum

tensor Ttotal(z) becomes

Ttotal(z) = −1

2
(∂ϕ)2 + iα+∂2ϕ1 +

1

2
(χ∂χ̄ + χ̄∂χ) + {QBRST , ∗}. (11)

Hence, up to a BRST exact term, we get the Feigin-Fuchs representation of the energy-

momentum tensor for the N = 2 minimal model [13].

Let us proceed to the Lie superalgebras A(n, n − 1) (n ≥ 1), whose rank is 2n. Odd

simple roots αi (i = 1, . . . , 2n) of the algebra are

α2i−1 = ei − δi, α2i = δi − ei+1, (12)

where ei (i = 1, . . . , n + 1) and δi (i = 1, . . . , n) are orthonormal basis of Rn+1 and Rn,

respectively, where ei (δj) have a positive (negative) metric. The positive root structure

is similar to A2n, namely the set of positive roots comes from the elements;

α = αi + · · · + αj, 1 ≤ i ≤ j ≤ 2n, (13)

where α is even (odd) root if j − i is odd (even). We can show that half the sum of

positive roots ρ becomes zero.

We consider the deformation by the Cartan currents, such that the fermionic cur-

rents j−α1(z), . . . , j−α2n(z) have conformal weights 1/2. This requires the second class

constraints by introducing the Majorana fermions χi (i = 1, . . . , 2n). Namely, we put the

constraints:

j−αi
(z) = αi · χ(z), i = 1, . . . , 2n

J−αi−αi+1
(z) = −αi · αi+1, i = 1, . . . , 2n − 1, (14)

and other currents for the remaining negative roots are zero. These conditions singles out

the direction of the deformation uniquely. Let the deformed energy-momentum tensor be

Tdeformed = TWZNW (z) − µ · ∂H(z), (15)
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where H(z) is the Cartan current:

H(z) = −iα+∂ϕ +
∑

α∈∆0
+

αγαβα +
∑

α∈∆1
+

αξαηα, (16)

and µ is a vector of the deformation. Under the deformation conformal dimensions of the

currents for the negative roots −α become 1−µ ·α. From the constraints (14), the vector

µ should satisfy the conditions

µ · αi =
1

2
, for i = 1, . . . , 2n. (17)

We can easily show that µ takes the form

µ =
1

2

n∑
i=1

{(n + 1 − i)α2i−1 + iα2i}. (18)

After a BRST gauge-fixing, the total energy-momentum tensor becomes

Ttotal(z) = −1

2
(∂ϕ)2 + iα+µ · ∂2ϕ − 1

2

2n∑
i=1

χi∂χi, (19)

up to BRST exact terms. We will show that this model has an N = 2 super-W algebra

structure. N = 2 supercurrents and the U(1) current are expressed as

G+(z) =
n∑

i=1

(α2i · ∂ϕλ2i · χ − iα+λ2i · ∂χ),

G−(z) = −
n∑

i=1

(α2i−1 · ∂ϕλ2i−1 · χ − iα+λ2i−1 · ∂χ),

J(z) =
n∑

i=1

(λ2i · χα2i · χ) + iα+

n∑
i=1

{(n + 1 − i)α2i−1 − iα2i} · ∂ϕ, (20)

where λi (i = 1 . . . , 2n) are dual basis to αi satisfying αi · λj = δij;

λ2i = α1 + α3 + · · · + α2i−1, λ2i−1 = α2i + α2i+2 + · · · + α2n, i = 1, . . . , n. (21)

We can obtain other higher-spin currents from the Miura transformation by solving the

equation (∂ − j(z))u(z) = 0 [1], where

j(z) =



θ1 χ1 1 0 · · · 0
0 θ2 χ2 1 · · · 0
0 0 θ3 χ3 · · · 0
...

. . .
...

0 . . . θ2n+1

 , u =


u1
...

u2n+1

 , (22)
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with θi = (−1)i−1(λi−λi−1)·∂ϕ, λ0 = λ2n+1 = 0 and χj = αj ·χ. We can show this equation

turns into a supersymmetric form by introducing auxiliary field ũ(z): (D−J(Z))U(Z) = 0,

where D = ∂
∂θ

+ θ ∂
∂z

is a super derivative, U(Z) = u(z) + θũ(z) and

J(Z) =


Θ1 1 0 · · · 0
0 Θ2 1 · · · 0
...

. . .
...

0 . . . Θ2n+1

 ,

with Θi = (−1)i−1(λi − λi−1)D · Φ, Φ = χ + θϕ. Hence the Miura transformation can be

expressed in a manifestly supersymmetric form [5]:

(D − Θ2n+1) · · · (D − Θ1)U1(Z) = 0. (23)

Expanding the above operation for U1(Z) in powers of D, we get the N = 2 super W-

currents.

From (19), the central charge of this model is shown to be

c = 3n − 12α2
+µ2 = 3n{1 − (n + 1)α2

+}. (24)

Setting α2
+ to be p/q (p, q: coprime integers), we get minimal series with the N = 2

super-W algebra. Note that the Feigin-Fuchs representation of the energy-momentum

tensor (19) is the same as that of the Kazama-Suzuki model CPn [10]. Actually, for

(p, q) = (1, k + n + 1) we get the central charge of the CPn model [9]:

c =
3kn

k + n + 1
. (25)

The screening currents are

Si(z) = αi · χ(z)exp(− iαi · ϕ(z)

α+

), i = 1, . . . , 2n. (26)

These screening operators characterize the null-field structure of the Fock module of the

N = 2 minimal CPn model. The character and correlation functions will be studied in

a forthcoming paper. In conclusion the N = 2 CPn model introduced by Kazama and

Suzuki is characterized by the N = 2 super-W algebra.
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We note that the SL(n + 1, n) WZNW model has zero central charge (see table 1).

It is interesting to try to trace the origin of this property from the topological field

theoretical nature of this special class of WZNW models. This interpretation is confirmed

by constructing the appropriate BRST-like fermionic charge Q. We have seen that the

affine Lie superalgebra includes fermionic currents; they provide a natural candidate for

the BRST-like charge. In fact, for the case A(1, 0)(1), we define the fermionic charge Q by

Q =
∫ dz

2πi
j−α1(z). (27)

The operator Q satisfies Q2 = 0 because of the operator product expansion: j−α1(z)j−α1(w) =

regular. Using this fermionic charge Q, we can express the energy-momentum tensor as

T (z) = {Q,U(z)},

U(z) = −ξ1η1∂ξ1 − 2η2∂γ12 −
1

2
(∂ϕ)2ξ1. (28)

In this sense the SL(2, 1) WZNW model becomes a topological field theory. This analysis

may be extended to other affine Lie superalgebra A(n, n− 1)(1). By suitable choice of the

basis for the unipotent group generated by the negative roots [14], the fermionic current

takes the form

j−α1(z) = ηα1 −
n∑

i=1

ξα2+···+α2i
βα1+·+α2i

−
n−1∑
i=1

γα2+···+α2i−1
ηα1+·+α2i−1

. (29)

Using the fermionic charge defined by eq. (27), we can express the energy-momentum

tensor in a BRST exact form:

T (z) = {Q,U(z)}, Q2 = 0, (30)

where

U(z) = −ξα1ηα1∂ξα1 −
n∑

i=1

ηα2+···+α2i
∂γα1+·+α2i

−
n−1∑
i=1

βα2+···+α2i−1
∂ξα1+·+α2i−1

+ξα1(−
1

2
(∂ϕ)2 −

∑
3 ≤ i ≤ j ≤ 2n

i − j : even

ηαi+···+αj
∂ξαi+···+αj
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−
∑

3 ≤ i ≤ j ≤ 2n
i − j : odd

βαi+···+αj
∂γαi+···+αj

). (31)

The simplest example of topological conformal field theory is the twisted N = 2

minimal model introduced by Eguchi and Yang [8]. We can show that this model is

obtained from the quantum Hamiltonian reduction of the SL(2, 1) WZNW model by

deforming the vector µ = λ2 in (15) and introducing auxiliary fermionic ghosts (η, ξ)

with weights (1, 0). This reduction does not change the central charge of the model. In

a similar way we can construct the topological N = 2 CPn model from a Hamiltonian

reduction of the SL(n + 1, n) WZNW model.

We also comment that the Q-cohomological structure of the affine Lie superalgebra

A(1, 0)(1). The structure of the kernel KerQ is just the space of the lowest weight states1

of the representations, with respect to the root α1. Therefore this model has a nontrivial

BRST structure. We can show that this is isomorphic to the usual chiral ring structure of

the N = 2 minimal models [15]. For the general case we expect that there is a relationship

between the chiral ring of CPn and the representation of the Lie superalgebra. Detailed

analysis will be presented elsewhere.

The author would like to thank K. Izawa, H. Kanno, H. Kunitomo and S.-K. Yang

for helpful discussions. He is also grateful to T. Inami for useful discussions and carefully

reading the manuscript.

1 In the present representation the usual highest weight representation becomes the lowest weight one.
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g sdim g h∨ c

A(r, s) (r − s)2 − 1 r − s
k{(r − s)2 − 1}

k + r − s

B(r, s) (r − s)(2r + 2s + 1) 2(r − s) + 1
k(r − s)(2r + 2s + 1)

k + 2(r − s) + 1

C(s) (2s − 3)(s − 2) 2(s − 1)
k(2s − 3)(s − 2)

k + 2(s − 1)

D(r, s) (r − s)(2r − 2s − 1) 2(r − s + 1)
k(r − s)(2r − 2s − 1)

k + 2(r − s − 1)

Table 1
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