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ABSTRACT

We develop a systematic method to obtain the Feigin-Fuchs representations for arbi-
trary affine Lie algebras from a geometrical view point. Choosing canonical coordinates
for the flag manifolds associated with the Lie algebras, we get the general formulas for
the Kac-Moody currents. In particular we use this method to construct explicitly the
Feigin-Fuchs representations for the affine Lie algebras of G

(1)
2 type.
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Conformal field theory plays a fundamental role in the investigation of string theory

and two-dimensional critical phenomena. The Feigin-Fuchs (or Coulomb gas) represen-

tation of conformal field theory gives a powerful tool to study the representations of the

chiral algebras and to calculate the correlation functions on Riemann surfaces and their

monodromy matrices, which reveal their quantum group structure. In particular the

Wess-Zumino-Witten (WZW) models, whose chiral algebras are affine Lie algebras, are

important because these models are considered to be “building blocks” of all rational

conformal field theories through the coset construction.

Recently the Feigin-Fuchs representations of WZW models are extensively studied

by many authors ([1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]). Wakimoto proposed a repre-

sentation of the affine Lie algebra A
(1)
1 at level 1 ([1]). Zamolodchikov generalized this

representation to arbitrary level k ([2]). In this construction the Kac-Moody currents

are realized by a pair of β-γ bosonic ghosts and a free boson coupled to the world sheet

curvature. A generalization to the case of the affine Lie algebras A(1)
n was done by several

authors ([4],[8],[10]). For other types of the affine Lie algebras, an explicit construction

of the affine Lie algebra C
(1)
2 was given in ref. [5]. In ref. [11] the Feigin-Fuchs represen-

tations of the affine Lie algebras of B(1)
n , C(1)

n and D(1)
n types were proposed, but one can

check that the currents corresponding to the positive roots do not satisfy the operator

product relations. Therefore it is necessary to construct the currents which satisfy the

correct operator product expansions for these types of affine Lie algebras.

In this letter we propose a systematic derivation of the Feigin-Fuchs representations

for general affine Lie algebras from the geometrical point of view. Our construction has

a manifest invariance under the (outer-)automorphism of the Lie algebra, which is not

manifest in the usual construction of the affine Lie algebras A(1)
n .

Let G be a complex simple Lie group corresponding to a complex simple Lie algebra

g. G admits a Gauss decomposition G = N+HN−, where N−(N+) is a unipotent
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subgroup of G generated by the negative (positive) roots of g and H is generated by

the Cartan subalgebra of g. We shall denote the corresponding subalgebras by n− (n+)

and h. Any element g of G is decomposed as follows:

g = ζδz, (1)

where ζ (z) is a lower(upper)-triangular matrix with ones along the diagonal and δ is

a diagonal matrix. The Chevalley generators Eα (α ∈ ∆) and H i (i = 1, . . . , r) of the

Lie algebra g, where ∆ is the set of the roots of g and r is the rank of g, satisfy the

following commutation relations:

[Eα, Eβ] = Nα,βEα+β,

[Eα, E−α] =
2α · H

α2
, for any α ∈ ∆,

[H,Eα] = αEα. (2)

where the numbers Nα,β are nonzero for α + β ∈ ∆, and can all be taken as integers in

the Chevalley basis.

It was indicated in refs. [4] and [9] that the Kac-Moody currents in the Feigin-Fuchs

construction are closely related to the representation of a Lie algebra g on the space

of sections RΛ of a line bundle over a Schubert cell Y in the flag manifold B+\G,

determined by a character χΛ : B+ → C, where B+ is a Borel subgroup generated by

the positive roots and the Cartan subalgebra. A section is represented by the function

f on G, which satisfies the following condition:

f(bg) = χΛ(b)f(g), for b ∈ B+ and g ∈ G. (3)

The character χΛ is defined as follows:

χΛ(b) = χΛ(δ) = eφ·Λ(H), for b = ζδ, δ = eφ·H . (4)

Therefore f(g) is parametrized by the coordinates z of Y and denoted as f(z). A right
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representation σΛ of g on RΛ is defined as ([12])

(σΛ(x)f)(z) = Λ((Adz)x)f(z) +
d

dt
f(zetx)

∣∣∣∣∣
t=0

, (5)

where

Λ(y) =

{
0, for y ∈ n−,
d
dt

χΛ(ety)
∣∣∣
t=0

, for y ∈ b+ = n+ ⊕ h. (6)

In this representation σΛ(x) becomes a differential operator with respect to z. Also we

can define the representation of n− from the left action of G on Y as follows. If we set,

for x ∈ n−,

(ρ(x)f)(z) =
d

dt
f(e−txz)

∣∣∣∣
t=0

, (7)

then ρ defines a representation of n−. As it was mentioned in ref. [9], ρ is related to the

screening current S(z), which satisfies

J(z)S(w) =
∂

∂w

(
1

z − w
O(w)

)
, (8)

where J(z) is any Kac-Moody current and O(z) is a local operator.

In the case of An it is useful to parametrize the coordinates of Y by the elements of the

upper triangular matrix z in the Gauss decomposition (1). However for other simple

Lie algebras this parametrization is awkward because all the elements of the upper-

triangular matrix z in (1) are not independent. Moreover in the case of exceptional

groups, we have to calculate group elements without appealing to the explicit matrix

representation. Therefore in this letter we choose the following canonical parametriza-

tion of Y :

z = exp(
∑

α∈∆+

zαE−α). (9)

In order to obtain the explicit expressions for currents, we need to calculate the

product zety (y ∈ g). By using Hausdorff’s formula exp(x)exp(ty) = exp(x+ tu+O(t2)),

where u is equal to

∞∑
m=1

(−1)m−1

m

 ∑
p1>0,...,pm≥0

1

p1! · · · pm!

1

p1 + · · · + pm + 1
(adx)p1+···+pmy
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+
∑

p1>0,...,pm−1≥0

1

p1! · · · pm−1!

1

p1 + · · · + pm−1 + 2
(adx)p1+···+pm−1(ady)x

 , (10)

or simply can be written in the following form:

u =

(
adx

eadx − 1
+ adx

)
y =

( ∞∑
n=0

B̃n

n!
(adx)n + adx

)
y, (11)

The coefficients B̃n are defined as

B̃0 = 1, B̃1 = −1

2
,

B̃2n = (−1)n−1B2n, B̃2n+1 = 0, for n ≥ 1, (12)

where Bn are Bernoulli numbers

B2 =
1

6
, B4 =

1

30
, . . . ; B2n+1 = 0 for n ≥ 1. (13)

Substituting x =
∑

β∈∆+
zβE−β and y = E−α in (11), we get the representation for

negative roots

σΛ(E−α) =
∑

β∈∆+

N−β,−αzβ
∂

∂zβ+α

+
∞∑

n=0

B̃n

n!

∑
β1,...,βn∈∆+

N−β1,−β2−···−α · · ·N−βn,−αzβ1 · · · zβn

∂

∂zβ1+···+βn+α

. (14)

In a similar manner the representation ρ is obtained as follows:

ρ(E−α) =
∑

β∈∆+

N−β,−αzβ
∂

∂zβ+α

+
∞∑

n=0

(−1)n+1 B̃n

n!

∑
β1,...,βn∈∆+

N−β1,−β2−···−α · · ·N−βn,−αzβ1 · · · zβn

∂

∂zβ1+···+βn+α

.

(15)

If we substitute H for y in (11), we get the following Gauss decomposition:

exetH = etHex+t(adx)H+O(t2). (16)

4



Therefore we get the currents for the Cartan part

σΛ(H) = Λ(H) +
∑

β∈∆+

βzβ
∂

∂zβ

. (17)

Finally we consider the currents for the positive roots. In the case that α is a simple

root, we obtain the Gauss decomposition:

exetEα = etEαe−tzα2α·H/α2

ex+tv+O(t2), (18)

where

v =

(
−adx

e−adx − 1
− adx − 1

)
zα

2α · H
α2

+
∑

β,β−α∈∆+

zβN−β,αE−β+α. (19)

Therefore we get the following representation for the positive simple roots:

σΛ(Eα) = −2Λ · α
α2

zα +
∑

β,β−α∈∆+

N−β,αzβ
∂

∂zβ−α

− 1

2

∑
β∈∆+

2α · β
α2

zαzβ
∂

∂zβ

+
∞∑

n=2

B̃n

n!

∑
β1,...,βn∈∆+

2α · βn

α2
N−β1,−β2−···−βn · · ·N−βn−1,−βnzαzβ1 · · · zβn

∂

∂zβ1+···+βn

.

(20)

For the positive roots α except for the simple roots we must use more complicated Gauss

decomposition formulas instead of (18). However the representations corresponding to

the positive non-simple roots can be obtained by using the commutation relations of

the generators for the simple roots.

Thus we obtain the representation of simple Lie algebras σΛ(E−α), σΛ(Eα), σΛ(H i)

and ρ(E−α). The prescription † to extend this to the affine case is as follows ([9]):

1. Replace ∂/∂zα → βα(z) and zα → γα(z) (α ∈ ∆+), where βα and γα are the bosonic

ghosts with conformal dimensions 1 and 0 respectively, and satisfy

βα(z)γα′(w) =
δα,α′

z − w
, α, α′ ∈ ∆+. (21)

† In fact this prescription can be proved by the extension of the present finite-dimensional flag manifold
analysis to the infinite-dimensional one as discussed by Bernard and Felder for the A

(1)
1 case([7]).
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2. Replace Λi by the term −iα+∂ϕi(z) for the Cartan part and the positive roots. Add

the term aα∂γα(z) (aα is a number determined by the consistency of the operator

product relations of the affine Lie algebra ĝ) to the currents corresponding to the

simple roots α. Multiply ρ(E−α) by exp(iα−αϕ(z)) for the screening current. Here

ϕi(z) (i = 1, . . . , r) are free bosons satisfying

ϕi(z)ϕj(w) = −δij log(z − w), (22)

and α+ ≡
√

k + g and α− = −1/α+, where k is the level of the affine Lie algebra

and g is the dual Coxeter number of the algebra.

By this prescription we get the general expressions for the Kac-Moody currents of the

affine Lie algebras which include not only A,B,C,D types but also the exceptional types.

For the negative root, the corresponding Kac-Moody currents are

J−α(z) = βα +
1

2

∑
β1∈∆+

N−β1,−αγβ1ββ1+α

+
∞∑

n=2

B̃n

n!

∑
β1,...,βn∈∆+

N−β1,−β2−···−α · · ·N−βn,−αγβ1 · · · γβnββ1+···+βn+α. (23)

For the positive simple roots, the currents are

Jα(z) = aα∂γα +
2iα+γαα · ∂ϕ

α2
− 1

2

∑
β1∈∆+

2α · β1

α2
γαγβ1ββ1 +

∑
β ∈ ∆+

β − α ∈ ∆+

N−β,αγβββ−α

+
∞∑

n=2

B̃n

n!

∑
β1,...,βn∈∆+

2α · βn

α2
N−β1,−β2−···−βn · · ·N−βn−1,−βnγαγβ1 · · · γβnββ1+···+βn .

(24)

The constant aα is determined by the operator product expansion between Jα and J−α

Jα(z)J−α(w) =
2k/α2

(z − w)2
+

2α · H(w)/α2

z − w
+ · · · , (25)

and is given as

aα =
2k

α2
+

1

2

∑
β1∈∆+,β1−α∈∆+

N−β1,αN−β1+α,−α. (26)
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We note that the first three terms in eq. (24) are the same form of those of the

A
(1)
1 Kac-moody current for the positive root. However it should be noted that the

above Kac-Moody currents (23), (24) are different from those appeared in other pa-

pers ([4],[5],[6],[7], [8], [9],[10]) because of the parametrization (9). The currents for the

Cartan part are

H i(z) = −iα+∂ϕi(z) +
∑

α∈∆+

αiγαβα(z), (i = 1, . . . , r). (27)

The screening operator, which corresponds to the simple root α, is

Sα(z) = (βα − 1

2

∑
β∈∆+

N−β,−αγβββ+α (28)

+
∞∑

n=2

B̃n

n!

∑
β1,...,βn∈∆+

N−β1,−β2−···−α · · ·N−βn,−αγβ1 · · · γβnββ1+···+βn+α)eiα−α·ϕ.

The above Kac-Moody currents should satisfy the operator product expansions of the

affine Lie algebra

Jα(z)Jβ(w) =
Nα,βJα+β(w)

z − w
+ · · · , for α + β ∈ ∆,

Jα(z)J−α(w) =
2k/α2

(z − w)2
+

2α · H(w)/α2

z − w
+ · · · ,

H i(z)Jα(w) =
αiJα(w)

z − w
+ · · · ,

H i(z)Hj(w) =
kδij

(z − w)2
+ · · · . (29)

In order to check (29) we need some identities among the structure constants Nα,β. It

is difficult to prove these operator product expansions in general. However (29) can be

checked explicitly for some nontrivial cases as discussed below. Note that the currents

for the positive non-simple roots can be obtained from the above operator product

expansions. They are essentially similar to (24) but we need the terms which come

from the operator product expansions between aα∂γα and the other terms in (24).

We will show some examples for the Feigin-Fuchs representations of the affine Lie

algebras. Detailed analysis for the general affine Lie algebras will be discussed in a

subsequent paper.
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(1) The B
(1)
2 -type affine Lie algebra (dim B2 = 10, g = 3). We denote the simple

roots of B2 by α1 and α2 (α1 is the long root). Currents for negative (simple) roots are

J−α1(z) = β1 −
1

2
γ2β12 +

1

6
γ2

2β122,

J−α2(z) = β2 +
1

2
γ1β12 +

(
γ12 −

1

6
γ1γ2

)
β122, (30)

where we define β1, β12 as βα1 , βα1+α2 etc. Currents for positive simple roots are

Jα1(z) =
(
k +

1

2

)
∂γ1 + iα+γ1α1 · ∂ϕ − γ2

1β1

+
(
−γ12 +

1

2
γ1γ2

)
β2 +

(
−1

2
γ12 −

1

4
γ1γ2

)
γ1β12 −

1

3
γ1γ2γ12β122,

Jα2(z) = (2k + 2)∂γ2 + 2iα+γ2α2 · ∂ϕ − γ2
2β2

+
(
2γ12 + γ1γ2

)
β1 +

(
γ122 +

1

3
γ1γ

2
2

)
β12 +

(
−γ122 +

1

3
γ2γ12

)
γ2β122. (31)

Screening currents are

Sα1(z) =
(
β1 +

1

2
γ2β12 +

1

6
γ2

2β122

)
eiα−α1·ϕ,

Sα2(z) =
[
β2 −

1

2
γ1β12 +

(
−γ12 −

1

6
γ1γ2

)
β122

]
eiα−α2·ϕ. (32)

(2) The G
(1)
2 -type affine Lie algebra (dim G2 = 14, g = 4). We denote the simple

roots by α1 and α2 (α1 is the long root). Currents for negative (simple) roots are

J−α1(z) = β1 −
1

2
γ2β12 +

1

6
γ2

2β112 +
(1

2
γ1222 +

1

4
γ2γ122 −

1

120
γ1γ

3
2

)
β11222,

J−α2(z) = β2 +
1

2
γ1β12 +

(
γ12 −

1

6
γ1γ2

)
β122 +

(3

2
γ122 −

1

2
γ2γ12

)
β1222

+
(
−1

2
γ1γ122 +

1

2
γ2

12 +
1

120
γ2

1γ
2
2

)
β11222. (33)

Currents for positive simple roots are

Jα1(z) = (k + 1)∂γ1 + iα+γ1α1 · ∂ϕ − γ2
1β1

+
(
−γ12 +

1

2
γ1γ2

)
β2 +

(
−1

2
γ12 −

1

4
γ1γ2

)
γ1β12 −

1

3
γ1γ2γ12β122

+
(
γ11222 +

1

2
γ1γ1222 −

1

4
γ1γ2γ122 +

1

40
γ2

1γ
3
2

)
β1222
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+
(
−1

2
γ11222 +

1

4
γ1γ1222 −

1

4
γ12γ122 −

1

120
γ1γ

2
2γ12

)
γ1β11222,

Jα2(z) = (3k + 5)∂γ2 + 3iα+γ2α2 · ∂ϕ − γ2
2β2

+
(
3γ12 +

3

2
γ1γ2

)
β1 +

(
2γ122 +

1

2
γ2γ12 +

5

12
γ1γ

2
2

)
β12

+
(
γ1222 −

1

2
γ2γ122 +

1

2
γ2

2γ12

)
β122 +

(
−3

2
γ1222 +

1

4
γ2γ122 −

1

24
γ1γ

3
2

)
γ2β1222

+
(
−1

2
γ1γ1222 +

1

2
γ12γ122 +

1

60
γ1γ

2
2γ12

)
γ2β11222. (34)

The currents for non-simple roots can be obtained by making operator products of these

two currents. Screening currents are

Sα1(z) =
[
β1 +

1

2
γ2β12 +

1

6
γ2

2β122 +
(
−1

2
γ1222 +

1

4
γ2γ122 −

1

120
γ1γ

3
2

)
β11222

]
eiα−α1·ϕ,

Sα2(z) =
[
β2 −

1

2
γ1β12 +

(
−γ12 −

1

6
γ1γ2

)
β122 +

(
−3

2
γ122 −

1

2
γ2γ12

)
β1222

+
(
−1

2
γ1γ122 +

1

2
γ2

12 +
1

120
γ3

1γ
2
2

)
β11222

]
eiα−α2·ϕ. (35)

Though these expressions are quite cumbersome to manipulate, one can explicitly check

that they completely satisfy the operator product relations of the affine Lie algebras.

One can also see that the outer-automorphism symmetry of the Lie algebra in the

currents is manifest in our expression. In particular the Z3 symmetry appears in the

case of D
(1)
4 . By using the screening charges we can study the null field structure of

the Fock modules of the affine Lie algebras. The Feigin-Fuchs construction enables us

to calculate correlation functions on the Riemann surfaces as integral representations.

It may be interesting to study the monodromy properties of correlation functions using

this representation and to investigate the relationship between the WZW models and

the quantum groups. In particular the above expressions for the affine Lie algebra G
(1)
2

(33), (34), (35) are the first results obtained for the Feigin-Fuchs representations of the

exceptional affine Lie algebra. One can use these expressions to calculate the braid

matrices and to study the correspondence with the quantum R matrix for G2, which

has already been obtained ([13]). It is also important to study the coset construction

([10]) and the related W -algebras. The W -algebras corresponding to the affine Lie

9



algebras A(1)
n , B(1)

n and D(1)
n are known ([14]). It is expected that the W -algebra for the

affine Lie algebra G
(1)
2 has a spin-6 current together with the energy-momentum tensor,

and that these two currents form a closed algebra. We also get the expressions for

the generalized parafermionic currents by the bosonization of the bosonic ghosts (β, γ)

and factorizing the Cartan part ([8]). To analyze the parafermionic Fock modules, we

need the fermionic screening operators. We emphasize that the geometrical method

is a powerful tool for the free field construction of the affine Lie algebras. It seems

interesting to study the coset models and their chiral algebras from this geometrical

point of view. These problems will be discussed elsewhere.
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