ODE/IM correspondence and modified affine Toda equations

Katsushi Ito

Tokyo Institute of Technology

June 18, 2014
Finite-size Technology in Low Dimensional Systems (VII)
Budapest, 16-27 June 2014

KI and C. Locke, arXiv:1312.6759, to appear in Nucl. Phys. B

Introduction

- The ODE/IM correspondence is a relation between spectral analysis of ODEs, and the "functional relations" approach to 2d quantum integrable models(IM). [Dorey-Tateo]
- This is an example of the correspondence between classical and quantum integrable models
- has many applications
 - \blacktriangleright gluon scattering amplitudes in $\mathcal{N}=4$ SYM at strong coupling [Alday-Maldacena]
 - $lackbox{ BPS spectrum in } N=2 \ {
 m SUSY gauge theories [Gaiotto-Moore-Neitzke]}$
 - gauge/Bethe correspondence [Nekrasov-Shatashvili]

Minimal surface in AdS and quantum integrable system

Alday-Maldacena, Alday-Gaiotto-Maldacena

- String theory in AdS spacetime
- moving frame eq. in AdS=Hitchin system
- Iinear problem of the Hitchin system ⇒ functional relations for the Stokes coefficients
- Y-system and the TBA system [Alday-Maldacena-Sever-Vieira]
- relation to the Homogeneous Sine-Gordon model $SU(N)_k/U(1)^{N-1}$ [Hatsuda-Ito-Sakai-Satoh]

 $Hitchin \ system \Longrightarrow affine \ Toda \ field \ equations \ (Pohlmeyer \ reduction)$

- AdS₃: modified sinh-Gordon equations [Alday-Maldacena]
- AdS₄: B₂ affine Toda equations [Burrington-Gao]

- Lukyanov-Zamolodchikov (2010) studied the linear problem associated with the modified sinh-Gordon equation in the context of ODE/IM correspondence $(A_1^{(1)})$
- The results were generalized to the case of Tzitzéica-Bullough -Dodd equation by Dorey et al. (2012).($A_2^{(2)}$)
- minimal surface in CP_n : A_{n-1} affine Toda equation [Bolton-Woddard]

We will

- Introduce the affine Toda field equation and its linear problem
- Discuss the conformal limit and the Bethe ansatz equations for affine Lie algberas

The general scheme of the ODE/IM correspondence for affine Toda equation is [Dorey-Faldella-Negro-Tateo]

- Introduction
- 2 ODE/IM correspondence and modified sinh-Gordon equation
- 3 affine Toda field equations
- 4 Conformal Limit and ODE/IM correspondence
- Outlook

OED/IM correspondence

[Dorey-Tateo, Bazhanov-Lukyanov-Zamolodchikov]

ODE

$$\[-\frac{d^2}{dx^2} + \frac{\ell(\ell+1)}{x^2} + x^{2M} - E \] y(x, E, \ell) = 0$$

- large, positive x asymptotics: $y \sim \frac{x^{-\frac{M}{2}}}{\sqrt{2i}} \exp\left(-\frac{x^{M+1}}{M+1}\right)$
- $\{y_k, y_{k+1}\}$ forms a basis of solutions for the ODE: $y_k(x, E, \ell) = \omega^{\frac{k}{2}} y(\omega^{-k} x, \omega^{2k} E, \ell) \ (\omega = \exp(\frac{2\pi i}{2M+2}))$
- They obeys the Stokes relation

$$C(E,\ell)y_0(x,E,\ell) = y_{-1}(x,E,\ell) + y_1(x,E,\ell)$$

The coefficient $C(E, \ell)$ is called the Stokes multiplier.

◆□ → ◆□ → ◆ □ → ◆ □ → ○ へ ○

- small x asymptotics: $\psi(x, E, \ell) \sim x^{\ell+1}$ (other solution is $x^{-\ell}$)
- ullet Take the Wronskian of both sides of the Stokes relation with ψ

$$C(E,\ell)W[y_0,\psi](E,\ell) = W[y_{-1},\psi](E,\ell) + W[y_1,\psi](E,\ell)$$

Setting $D(E,\ell)=W[y_0,\psi]$, the above relation is

$$C(E,\ell)D(E,\ell) = \omega^{-(\ell+\frac{1}{2})}D(\omega^2 E,\ell) + \omega^{\ell+\frac{1}{2}}D(\omega^2 E,\ell)$$

T-Q relation: (D: Q-function (spectral determinant), C: T-function)

- $\psi_+ = \psi(x, E, \ell)$, $\psi_- = \psi(x, E, -\ell 1)$ are linearly independent solutions. The Wronskian $W[\psi_+, \psi_-]$ yields the quantum Wronskian relations for D. $(2\ell+1) = \omega^{-(\ell+\frac{1}{2})}D_-(\omega^{-1}E)D_+(\omega E) \omega^{\ell+\frac{1}{2}}D_-(\omega E)D_+(\omega^{-1}E)$
- One can then derive the Bethe ansatz equation from the quantum Wronskian relation.

ODE	I(ntegrable) M(odel)
	6-vertex model
energy E	spectral parameter
degree of potential ${\it M}$	anisotropy
angular momentum ℓ	twist paramter
Stokes multiplier $C(E,\ell)$	Transfer matrix (T-function)
spectral determinant $D(E,\ell)$	Q-operator
the Stokes relation	T-Q relation

- relation to (boundary) conformal perturbation theory [BLZ, Bazhanov-Hibberd-Khoroshkin, Kojima]
- generalization to ABCD type [Dorey-Dunning-Masoero-Suzuki-Tateo]

4D + 4B + 4B + B + 990

9 / 29

modified sinh-Gordon equation: $A_1^{(1)}$

[Lukyanov-Zamolodchikov 1003.5333] modified Sinh-Gordon equation

$$\partial_z \partial_{\bar{z}} \eta - e^{2\eta} + p(z)\bar{p}(\bar{z})e^{-2\eta} = 0, \quad p(z) = z^{2M} - s^{2M}$$

zero curvature condition $[\partial + A, \bar{\partial} + \bar{A}] = 0$

$$A = \frac{1}{2}\partial_z \eta \sigma^3 - e^{\theta}(\sigma^+ e^{\eta} + \sigma^- p e^{-\eta})$$

$$\bar{A} = -\frac{1}{2}\partial_{\bar{z}} \eta \sigma^3 - e^{-\theta}(\sigma^+ e^{\eta} + \sigma^- \bar{p} e^{-\eta})$$

asymptotic behavior of $\eta(z,\bar{z})$ at $\rho \to 0, \infty$ $(z=\rho e^{i\phi})$

- $\eta \to M \log \rho \ (\rho \to \infty)$
- $\eta \to \ell \log \rho \ (\rho \to 0)$

linear system and its solutions

- linear problem $(\partial + A)\Psi = (\bar{\partial} + \bar{A})\Psi = 0$
- linear problem is invariant under Ω : $\phi \to \phi + \frac{\pi}{M}$, $\theta \to \theta \frac{i\pi}{M}$ Π : $\theta \to \theta + i\pi$
- $\rho \to 0$ basis $\Psi_{\pm}(\rho, \phi | \theta)$
- ullet $ho
 ightarrow \infty$, from the WKB analysis, subdominant solution is

$$\Xi \sim \begin{pmatrix} e^{\frac{iM\phi}{2}} \\ e^{-\frac{iM\phi}{2}} \end{pmatrix} \exp\left(-\frac{2\rho^{M+1}}{M+1}\cosh(\theta+i(M+1)\phi)\right)$$

•

$$\Xi = Q_{-}(\theta)\Psi_{+} + Q_{+}(\theta)\Psi_{-}$$

 $Q_{\pm}(heta)$ are the Q-function of the quantum Sinh-Gordon model

From MShG to ODE

• take the light-cone limit $\bar{z} \to 0$. Then linear system reduced to a differential equation.

$$\Psi = \left(\begin{array}{c} e^{\frac{\theta}{2}} e^{\frac{\eta}{2}} \psi \\ e^{\frac{-\eta}{2}} e^{\frac{\theta}{2}} (\partial_z + \partial_z \eta) \psi \end{array} \right)$$

$$\left[\partial_z^2 - u - e^{\theta} p\right] \psi = 0, \quad u = (\partial_z \eta)^2 - \partial_z^2 \eta$$

• conformal limit: $z \to 0$, $\theta \to \infty$

$$x=ze^{\frac{\theta}{M+1}},\quad E=s^{2M}e^{\frac{2\theta M}{1+M}},\quad {\rm fixed}$$

$$\left[-\partial_x^2 + \frac{\ell(\ell+1)}{x^2} + x^{2M} \right] \psi = E\psi$$

Schrödinger type ODE: [Dorey-Tateo, Bazhanov-Lukyanov-Zamolodchikov]

affine Toda field equations (1)

 \mathfrak{g} : a simple Lie algebra of rank r

$$\begin{split} [E_{\alpha},E_{\beta}] &= N_{\alpha,\beta}E_{\alpha+\beta}, \quad \text{for } \alpha+\beta \neq 0, \\ [E_{\alpha},E_{-\alpha}] &= \frac{2\alpha \cdot H}{\alpha^2}, \\ [H^i,E_{\alpha}] &= \alpha^i E_{\alpha}. \end{split}$$

 $\begin{array}{l} \alpha_1,\cdots,\alpha_r \text{: the simple roots of } \mathfrak{g} \\ \alpha_1^\vee,\cdots,\alpha_r^\vee \text{: simple coroots} \\ \alpha_0=-\theta \text{ (θ: the highest root)} \\ \text{(dual) Coxter labels: } \sum_{i=0}^r n_i\alpha_i=\sum_{i=0}^r n_i^\vee\alpha_i^\vee=0. \\ \text{(dual) Coxter number h, h^\vee:} \end{array}$

$$h = \sum_{i=0}^{r} n_i, \quad h^{\vee} = \sum_{i=0}^{r} n_i^{\vee}.$$

affine Toda field equations (2)

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} \phi \cdot \partial_{\mu} \phi - \left(\frac{m}{\beta}\right)^{2} \sum_{i=0}^{r} n_{i} \left[\exp(\beta \alpha_{i} \cdot \phi) - 1 \right],$$
$$\partial^{\mu} \partial_{\mu} \phi + \left(\frac{m^{2}}{\beta}\right) \sum_{i=0}^{r} n_{i} \alpha_{i} \exp(\beta \alpha_{i} \phi) = 0.$$

complex coordinates: $z=\frac{1}{2}(x^0+ix^1),\quad \bar{z}=\frac{1}{2}(x^0-ix^1)$ conformal transformation (ρ^\vee : co-Weyl vector)

$$z \to \tilde{z} = f(z), \quad \phi \to \tilde{\phi} = \phi - \frac{1}{\beta} \rho^{\vee} \log(\partial f \bar{\partial} \bar{f}),$$

modified affine Toda equations:

$$\partial \bar{\partial} \phi + \left(\frac{m^2}{\beta}\right) \left[\sum_{i=1}^r n_i \alpha_i \exp(\beta \alpha_i \phi) + p(z) \bar{p}(\bar{z}) n_0 \alpha_0 \exp(\beta \alpha_0 \phi) \right] = 0,$$

$$p(z) = (\partial f)^h, \quad \bar{p}(\bar{z}) = (\bar{\partial}\bar{f})^h.$$

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ からぐ

Lax formalism

• The modified affine Toda equation can be expressed as a linear problem: $(\partial + A)\Psi = 0$ and $(\bar{\partial} + \bar{A})\Psi = 0$.

$$A = \frac{\beta}{2} \partial \phi \cdot H + me^{\lambda} \left\{ \sum_{i=1}^{r} \sqrt{n_i^{\vee}} E_{\alpha_i} e^{\frac{\beta}{2} \alpha_i \phi} + p(z) \sqrt{n_0^{\vee}} E_{\alpha_0} e^{\frac{\beta}{2} \alpha_0 \phi} \right\},$$

$$\bar{A} = -\frac{\beta}{2} \bar{\partial} \phi \cdot H - me^{-\lambda} \left\{ \sum_{i=1}^{r} \sqrt{n_i^{\vee}} E_{-\alpha_i} e^{\frac{\beta}{2} \alpha_i \phi} + \bar{p}(\bar{z}) \sqrt{n_0^{\vee}} E_{-\alpha_0} e^{\frac{\beta}{2} \alpha_0 \phi} \right\}$$

• zero-curvature condition: $[\partial+A,\bar{\partial}+\bar{A}]=0\Longrightarrow$ affine Toda field equations

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ からぐ

symmetries and p(z)

Motivated by the ODE/IM correspondence, we put

$$p(z) = z^{hM} - s^{hM}, \quad \bar{p}(\bar{z}) = \bar{z}^{hN} - \bar{s}^{hM}$$

- ullet h: the Coxeter number, and M is some positive real parameter
- ullet We define the transformation $\hat{\Omega}_k$

$$z \to ze^{\frac{2\pi ki}{hM}}$$
$$s \to se^{\frac{2\pi ki}{hM}}$$
$$\lambda \to \lambda - \frac{2\pi ki}{hM}$$

• The quation of motion and linear problem are invarinant under $\hat{\Omega}_k$ for integer k.

asymptotic behavior of the Toda field

• In the large |z| limit, we assume that the asymptotic solution to the modified affine Toda equation is

$$\phi(z,\bar{z}) = \frac{M}{\beta} \rho^{\vee} \log(z\bar{z}) + O(1)$$

• For small |z|, we assume logarithmic behavior, with expansion

$$\phi(z,\bar{z}) = g \log(z\bar{z}) + \phi^{(0)}(g) + \gamma(z,\bar{z},g) + \sum_{i=0}^{r} \frac{C_i(g)}{(c_i(g)+1)^2} (\bar{z}\bar{z})^{c_i(g)+1} + \cdots$$

- ullet Substituting this expansion into the Toda equation, we can determine the constants C_i
- The exponents are found to be $c_i + 1 = 1 + \beta \alpha_i \cdot g > 0$.

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ から()

$A_r^{(1)}$ modified affine Toda [KI-Locke, Adamopuolou-Dunning]

- This is the simplest algebra to start with, and includes the sinh-Gordon model as a specific example
- the fundamental representation with highest weight ω_1 weights are $h_1=\omega_1$, $h_i=\omega_i-\omega_{i+1}$, $h_{r+1}=-\omega_r$, where ω_i are the fundamental weights defined by $\omega_i\cdot\alpha_i^\vee=\delta_{ij}$
- The linear problem $(\partial_z + A)\Psi = 0$, $\Psi = {}^t(\psi_1, \cdots, \psi_{r+1})$ holomorphic connection:

$$A = \begin{pmatrix} \frac{\beta}{2}h_1 \cdot \partial \phi & me^{\lambda}e^{\frac{\beta}{2}\alpha_1 \cdot \phi} & 0 & \cdots & 0 \\ 0 & \frac{\beta}{2}h_2 \cdot \partial \phi & me^{\lambda}e^{\frac{\beta}{2}\alpha_2 \cdot \phi} & & \vdots \\ & & & \ddots & & \\ \vdots & & & \frac{\beta}{2}h_r \cdot \partial \phi & me^{\lambda}e^{\frac{\beta}{2}\alpha_r \cdot \phi} \\ me^{\lambda}p(z)e^{\frac{\beta}{2}\alpha_0 \cdot \phi} & \cdots & 0 & \frac{\beta}{2}h_{r+1} \cdot \partial \phi \end{pmatrix}.$$

• gauge transformation: $U=diag(e^{-rac{eta}{2}h_1\cdot\phi},\cdots,e^{-rac{eta}{2}h_{r+1}\cdot\phi})$

$$\tilde{A} = UAU^{-1} + U\partial U^{-1}, \quad \tilde{\Psi} = U\Psi,$$

$$\tilde{A} = \begin{pmatrix} \beta h_1 \partial \phi & me^{\lambda} & 0 & \cdots & 0 \\ 0 & \beta h_2 \partial \phi & me^{\lambda} & & \vdots \\ & & \ddots & & \\ \vdots & & & \beta h_r \partial \phi & me^{\lambda} \\ me^{\lambda} p(z) & & 0 & \beta h_{r+1} \partial \phi \end{pmatrix}.$$

ullet the linear problem becomes a single (r+1)-th order differential equation

$$D(h_{r+1})\cdots D(h_1)\tilde{\psi}_1 = (-me^{\lambda})^h p(z)\tilde{\psi}_1.$$

$$D(h) \equiv \partial + \beta h \cdot \partial \phi$$

scalar Lax operator (Drinfeld-Sokolov reduction)

(□) \ (≡) \ (≡) \ (°)

 For the barred linear equation, a different gauge transformation is used to simplify the equations

$$U = diag(e^{\frac{\beta}{2}h_1 \cdot \phi}, \cdots, e^{\frac{\beta}{2}h_{r+1} \cdot \phi}), \quad \tilde{\tilde{\Psi}} = U\Psi$$

• The full lienar problem gives the differential equations

$$D(h_{r+1})\cdots D(h_1)\psi = (-me^{\lambda})^h p(z)\psi$$

$$\bar{D}(-h_1)\cdots \bar{D}(-h_{r+1})\bar{\psi} = (me^{-\lambda})^h \bar{p}(\bar{z})\bar{\psi}$$

where
$$\psi = \tilde{\psi}_1$$
 and $\bar{\psi} = \tilde{\tilde{\psi}}_{r+1}$

the linear equation asymptotics

• For small |z|, using the asymptotic behavior of ϕ and substituting $\psi \sim z^\mu$, the indicial equation gives

$$\mu_i = i - \beta h_{i+1} \cdot g$$
 for $i = 0, 1, \dots, r$.

- orderd $\mu_i < \mu_{i+1}$
- ullet For large |z| limit, the relevant differential eq. becomes

$$(\partial^{r+1} + (-1)^r (me^{\lambda})^h p(z))\psi = 0,$$

• a WKB analysis gives the unique asymptotically decaying solution in the Stokes sector $|\arg z|<\frac{(r+2)\pi}{(r+1)(M+1)}$

$$\psi \sim z^{-\frac{rM}{2}} \exp\left(-\frac{z^{M+1}}{M+1} m e^{\lambda} + g(\bar{z})\right),$$

◆ロ > ◆部 > ◆注 > ◆注 > 注 り < ②</p>

Massive ODE/IM correspondence

 \bullet For small |z| solution $\psi^{(i)} \sim z^{\mu_i}$ define the vector $\Psi^{(i)}$ with

$$(\Psi^{(i)})_j \sim \delta_{ij}(\bar{z}/z)^{\frac{\beta}{2}h_i \cdot g}.$$

• For large |z| the solution is

$$\Xi(\rho,\theta|\lambda) \sim C \begin{pmatrix} e^{-\frac{irM\theta}{4}} \\ e^{-\frac{i(r-2)M\theta}{4}} \\ \vdots \\ e^{\frac{irM\theta}{4}} \end{pmatrix} \exp\left(-\frac{2\rho^{M+1}}{M+1} \ m \cosh(\lambda + i\theta(M+1))\right)$$

ullet we can expand Ξ as

$$\Xi = \sum_{i=0}^{r} Q_i(\lambda) \Psi^{(i)}.$$

For $A_1^{(1)}$ (sinh-Gordon) $A_2^{(2)}$ (Tzitzéica-Bullough-Dodd), the Q-coefficients correspond to the Q-function of a 2D massive QFT. $A_r^{(1)}$: KI-Locke, Adamopoulou-Dunning, 1401.1187

Conformal Limit and ODE/IM correspondence

• First we take the light-cone limit $\bar{z} \to 0$ and we define the conformal limit $z \to 0$, $\lambda \to \infty$ with fixed

$$x = (me^{\lambda})^{1/(M+1)}z, \ E = s^{hM}(me^{\lambda})^{hM/(M+1)}$$

The differential equation becomes

$$\left[D_x(h_{r+1}) \cdots D_x(h_1) - (-1)^h p(x, E) \right] \psi(x, E, g) = 0$$

where $D_x(a) = \partial_x + \beta \frac{a \cdot g}{x}$ and $p(x, E) \equiv x^{hM} - E$.

- ullet This is the ODE for A_r -type Lie algebra Suzuki, Dorey-Dunning-Tateo
- By writing out the unique asymptotically decaying solution $\xi(x,E,g)$ to this equation in terms of the small x basis $\chi^{(i)} \sim x^{\mu_i} + \mathcal{O}(x^{\mu_i+h})$, we have $\xi(x,E,g) = \sum_{i=0}^r Q^{(i)}(E)\chi^{(i)}(x,E,g)$

- Symanzik rotation $\psi_k(x,E,g)=\psi(\omega^kx,\Omega^kE,g)$ with $\Omega=\exp(i\frac{2\pi M}{M+1})$ and $\omega=\exp(i\frac{2\pi}{h})$
- auxiliary functions: $\psi^{(a)}=W^{(a)}(\psi_{\frac{1-a}{2}},\cdots,\psi_{\frac{a-1}{2}})$ $(a=2,\cdots,r)$
- $A_n \psi$ -system (Plücker relations)

$$\psi^{(a-1)}\psi^{(a+1)} = W[\psi^{(a)}_{-\frac{1}{2}}, \psi^{(a)}_{\frac{1}{2}}], \quad \psi^{(0)} = \psi^{(n)} = 1$$

quantum Wronskian relation

$$Q^{(a+1)}Q^{(a-1)} = \omega^{\frac{1}{2}(\mu_a - \mu_{a-1})}Q^{(a)}_{-\frac{1}{2}}\bar{Q}^{(a)}_{\frac{1}{2}} - \omega^{\frac{1}{2}(\mu_{a-1} - \mu_a)}Q^{(a)}_{\frac{1}{2}}\bar{Q}^{(a)}_{-\frac{1}{2}}$$

• Bethe ansatz equation

$$\omega^{\mu_{i-1}-\mu_i} \frac{Q_{-1/2}^{(i-1)}(E_n^{(i)})Q_1^{(i)}(E_n^{(i)})Q_{-1/2}^{(i+1)}(E_n^{(i)})}{Q_{1/2}^{(i-1)}(E_n^{(i)})Q_{-1}^{(i)}(E_n^{(i)})Q_{1/2}^{(i+1)}(E_n^{(i)})} = -1\,.$$

where $E_n^{(i)}$ are zeros of $Q^{(i)}(E)$.

Other affine Lie algberas [KI-Locke]

 We will consider the other affine Lie algebras and find the (pseudo-)diffrential equations associated to the linear problem for the fundamental representation.

$A_r^{(1)}$	$D(\mathbf{h})\psi = (-me^{\lambda})^h p(z)\psi$
$D_r^{(1)}$	$D(\mathbf{h}^{\dagger})\partial^{-1}D(\mathbf{h})\psi = 2^{r-1}(me^{\lambda})^{h}\sqrt{p(z)}\partial\sqrt{p(z)}\psi$
$B_r^{(1)}$	$D(\mathbf{h}^{\dagger})\partial D(\mathbf{h})\psi = 2^{r}(me^{\lambda})^{h}\sqrt{p(z)}\partial\sqrt{p(z)}\psi$
$A_{2r-1}^{(2)}$	$D(\mathbf{h}^{\dagger})D(\mathbf{h})\psi = -2^{r-1}(me^{\lambda})^{h}\sqrt{p(z)}\partial\sqrt{p(z)}\psi$
$C_r^{(1)}$	$D(\mathbf{h}^{\dagger})D(\mathbf{h})\psi = (me^{\lambda})^{h}p(z)\psi$
$ \begin{array}{c c} D_{r+1}^{(2)} \\ A_{2r}^{(2)} \end{array} $	$D(\mathbf{h}^{\dagger})\partial D(\mathbf{h})\psi = 2^{r+1}(me^{\lambda})^{2h}p(z)\partial^{-1}p(z)\psi$
$A_{2r}^{(2)}$	$D(\mathbf{h}^{\dagger})\partial D(\mathbf{h})\psi = -2^{r}\sqrt{2}(me^{\lambda})^{h}p(z)\psi$
$G_2^{(1)}$	$D(\mathbf{h}^{\dagger})\partial D(\mathbf{h})\psi = 8(me^{\lambda})^{h}\sqrt{p(z)}\partial\sqrt{p(z)}\psi$
	$D(\mathbf{h}^{\dagger})\partial D(\mathbf{h})\psi + (\omega + 1)2\sqrt{3}(me^{\lambda})^4D(\mathbf{h}^{\dagger})p(z)$
$D_4^{(3)}$	$-(\omega+1)2\sqrt{3}(me^{\lambda})^4pD(\mathbf{h}) - 8\sqrt{3}\omega(me^{\lambda})^3D(-h_1)\sqrt{p}\partial\sqrt{p}D(h_1)$
	$+(\omega-1)^3 12(me^{\lambda})^8 p \partial^{-1} p \} \psi = 0$

$$D(\mathbf{h}) = D(h_r) \cdots D(h_1), \ D(\mathbf{h}^{\dagger}) = D(-h_1) \cdots D(-h_r) \text{ for } \mathbf{h} = (h_r, \cdots, h_1)$$

◆ロ > ◆回 > ◆ き > ◆き > き め < ○</p>

Langlands duality

 In Dorey-Dunning-Masoero-Suzuki-Tateo (2007), they found a set of pseudo-differential equations associated to classical Lie algebras

affine Toda equation	ODE(Dorey et al.)
$A_r^{(1)}$	A_r
$(B_r^{(1)})^{\vee} = A_{2r-1}^{(2)}$	B_r
$(C_r^{(1)})^{\vee} = D_{r+1}^{(2)}$	C_r
$D_r^{(1)}$	D_r

• modified affine Toda equation for the Langlands dual $(\hat{\mathfrak{g}})^{\vee}$ corresponds to the \mathfrak{g} -type Bethe ansatz equation

Lie algebra isomorphism

To check our formalism, it is worthwhile to verify some isomorphisms.

• $D_2 = A_1 \oplus A_1$

$$A_{D_2} = 1_2 \otimes A'_{A_1} + A_{A_1} \otimes 1_2 \Leftrightarrow A_{A_1 \oplus A_1} = A_{A_1} \oplus A'_{A_1}$$

which is equivalent to $\psi_{D_2} = \psi \psi'$.

- ► ODE for A_1 : $D(-h_1)D(h_1)\psi = me^{\lambda}p(z)\psi$ ODE for A_1 : $D(-h_2)D(h_2)\psi' = me^{\lambda}p(z)\psi'$
- ▶ ODE for D_2 : $D(-h_1)D(-h_2)\partial^{-1}D(h_2)D(h_1)\psi_{D_2} = 4(me^{\lambda})^2\sqrt{p}\partial\sqrt{p}\psi_{D_2}$
- $D_3=A_3$ spin rep. of $D_3=$ vector rep, of A_3
- $B_2 = C_2$

Outlook

- Investigate effects of using $p(z) = (z^{hM/K} s^{hM/K})^K$.
- \bullet ODE/IM for affine Lie algebra of type $B_r^{(1)}$, $C_r^{(1)}$
- $A_{2r}^{(2)}$ r=1 Tzitzéica-Bullough-Dodd model [Dorey-Faldella-Negro-Tateo]
- \bullet exceptional type ODE/IM($G_2^{(1)}$ and $D_4^{(3)}$, $F_4^{(1)}$ and $E_6^{(2)}$, $E_r^{(1)}$)
- Matrix ODE/IM correspondence [Sun] auxiliary function ψ_a correspond to the highest weight component in the rep with h.w. ω_a . ψ -system \Longrightarrow quantum Wronskian \Longrightarrow BAE
- super affine Toda field theory based on affine Lie superalgebra
- generalized Drinfeld-Sokolov reduction [Balog-Feher-O'Raifeartaigh-Forgacs-Wipf]
- minimal surface in $\mathbb{C}P^n$ and other applications (vortex, Nekrasov-Shatashvili etc.)

4 D > 4 B > 4 E > 4 E > 9 Q P

ψ -system for G_2

$$\begin{split} \bullet \ D_4^{(3)} &= (G_2^{(1)})^\vee \\ & \iota(\Psi_{1/2}^{(1)} \wedge \Psi_{1/2}^{(1)}) = \Psi^{(2)} \\ & \iota(\Psi_{1/6}^{(2)} \wedge \Psi_{1/6}^{(2)}) = \Psi_{-1/3}^{(1)} \otimes \Psi_0^{(1)} \otimes \Psi_{1/3}^{(1)} \end{split}$$

[Dorey-Dunning-Masoero-Suzuki-Tateo]

• $G_2^{(1)}$

$$\begin{split} \iota(\Psi_{1/2}^{(2)} \wedge \Psi_{1/2}^{(2)}) &= \Psi^{(1)} \\ \iota(\Psi_{1/2}^{(1)} \wedge \Psi_{1/2}^{(1)}) &= \Psi^{(2)} \otimes \Psi^{(2)} \otimes \Psi^{(2)} \end{split}$$