Homework (2) of the intensive lecture

Deadline: January 19, 2024
Yasuyuki Hatsuda
yhatsuda@rikkyo.ac.jp

4 Reconstructing the deformed prepotential

Let us treat the modified Mathieu equation:

$$
\left(-\hbar^{2} \frac{d^{2}}{d x^{2}}+2 \Lambda^{2} \cosh x\right) \psi(x)=E \psi(x) .
$$

The quantum period integrals are given by

$$
A_{2 k}(E)=\oint_{C(a, b)} P_{2 k}(x) d x, \quad A_{2 k}^{\mathrm{D}}(E)=\frac{1}{2 \pi i} \int_{-\pi i}^{\pi i} P_{2 k}(x) d x .
$$

As I explain in the lecture, the dual quantum period $A_{2 k}^{\mathrm{D}}(E)$ is computed easily in the large E or the small Λ limit. This fact allows us to fix the deformed prepotential from the dual quantum period as follows.
(1) The Riccati equation for the WKB solution is given by

$$
P(x)^{2}-i \hbar P^{\prime}(x)=Q(x) .
$$

For $Q(x)=E-2 \Lambda^{2} \cosh x$, we can solve this equation order by order in Λ. We assume the perturbative expansion

$$
P(x)=\sum_{n=0}^{\infty} \Lambda^{2 n} Y_{n}(x) .
$$

At the zero-th order $(\Lambda=0)$, we find two solutions $Y_{0}(x)= \pm \sqrt{E}$ because it corresponds to the free particle. Set $Y_{0}(x)=\sqrt{E}$, then the n-th order correction satisfies

$$
Y_{n}^{\prime}(x)+i k Y_{n}(x)=R_{n}(x), \quad k:=\frac{2 \sqrt{E}}{\hbar}
$$

where $R_{n}(x)$ is determined by the lower order corrections. Confirm that

$$
Y_{n}(x)=e^{-i k x} \int^{x} e^{i k x^{\prime}} R_{n}\left(x^{\prime}\right) d x^{\prime}
$$

solves the above inhomogeneous differential equation.
(2) For $n=1$, we have

$$
R_{1}(x)=\frac{2}{i \hbar} \cosh x .
$$

Confirm that the special solution to this equation is given by

$$
Y_{1}(x)=-\frac{4 \sqrt{E} \cosh x+2 i \hbar \sinh x}{4 E+\hbar^{2}}
$$

where we determined an integration constant so that the special solution does not include the homogeneous solution $e^{-i k x}$.
(3) For $n \geq 2$, we have

$$
R_{n}(x)=\frac{1}{i \hbar} \sum_{m=1}^{n-1} Y_{m}(x) Y_{n-m}(x) .
$$

Confirm that

$$
Y_{2}(x)=-\frac{4 E^{2}+5 E \hbar+\hbar^{2}+E\left(4 E-5 \hbar^{2}\right) \cosh 2 x+i \sqrt{E} \hbar\left(8 E-\hbar^{2}\right) \sinh 2 x}{\sqrt{E}\left(E+\hbar^{2}\right)\left(4 E+\hbar^{2}\right)^{2}}
$$

is a solution to the second order equation.
(4) Pushing this computation, we can find $Y_{n}(x)$ systematically. Let us define

$$
A^{\mathrm{D}}(E ; \hbar):=\sum_{k=0}^{\infty} \hbar^{2 k} A_{2 k}^{\mathrm{D}}(E) .
$$

This is formally written as

$$
A^{\mathrm{D}}(E ; \hbar)=\frac{1}{2 \pi i} \int_{-\pi i}^{\pi i} P(x) d x=\sum_{n=0}^{\infty} \Lambda^{2 n} \frac{1}{2 \pi i} \int_{-\pi i}^{\pi i} Y_{n}(x) d x .
$$

Evaluating these integrals, we obtain

$$
A^{\mathrm{D}}(E ; \hbar)=\sqrt{E}-\frac{1}{\sqrt{E}\left(4 E+\hbar^{2}\right)} \Lambda^{4}-\frac{60 E^{2}+35 E \hbar^{2}+2 \hbar^{4}}{4 E^{3 / 2}\left(E+\hbar^{2}\right)\left(4 E+\hbar^{2}\right)^{3}} \Lambda^{8}+O\left(\Lambda^{12}\right)
$$

Now the quantum corrections are resummed! By solving this equation with respect to E, we can express E in terms of $a=A^{\mathrm{D}}(E ; \hbar)$. Moreover, by using

$$
E=-\frac{\Lambda}{4} \frac{\partial F(a ; \hbar)}{\partial \Lambda}
$$

we can finally reconstruct the deformed prepotential as

$$
F(a ; \hbar)=f(a ; \hbar)-4 a^{2} \log \Lambda-\frac{2}{4 a^{2}+\hbar^{2}} \Lambda^{4}-\frac{20 a^{2}-7 \hbar^{2}}{4\left(a^{2}+\hbar^{2}\right)\left(4 a^{2}+\hbar^{2}\right)^{3}} \Lambda^{8}+O\left(\Lambda^{12}\right)
$$

where $f(a ; \hbar)$ is a function depending on a and \hbar but not on Λ. This part corresponds to the "perturbative part" in the Nekrasov partition function. Confirm the above computation by yourself.

5 A toy model for quasi-normal mode problems

Let us consider the following wave equation:

$$
\left(\frac{d^{2}}{d x^{2}}+\omega^{2}-\frac{\ell(\ell+1)}{2 \cosh ^{2} x}\right) \psi(x)=0 \quad(\ell>0) .
$$

If the QNM boundary condition

$$
\psi(x) \sim \begin{cases}e^{i \omega x} & (x \rightarrow \infty) \\ e^{-i \omega x} & (x \rightarrow-\infty)\end{cases}
$$

is imposed, then only the discrete complex values of ω are allowed. In this toy model, the exact QNM eigenvalues are known:

$$
\omega_{n}= \pm \sqrt{\frac{\ell(\ell+1)}{2}-\frac{1}{4}}-i\left(n+\frac{1}{2}\right), \quad n=0,1,2, \ldots
$$

See $\S 4.1$ in [Berti et al., arXiv: 0905.2975] for instance.
Here we treat this problem by the WKB method. We define

$$
\hbar=\left(\frac{2}{\ell(\ell+1)}\right)^{1 / 2}, \quad E=(\hbar \omega)^{2} .
$$

The wave equation now takes the form of the Schrödinger equation

$$
\left(\hbar^{2} \frac{d^{2}}{d x^{2}}+E-\frac{1}{\cosh ^{2} x}\right) \psi(x)=0 .
$$

(1) Assume $0<E<1$. We want to compute the integral

$$
\widetilde{A}_{0}(E):=2 \int_{a}^{b} \sqrt{\frac{1}{\cosh ^{2} x}-E} d x=\frac{1}{i} \oint_{C(a, b)} P_{0}(x) d x
$$

where a and b are two real turning points with $b=-a>0$. By changing the integration variable, show

$$
\widetilde{A}_{0}(E)=2 \pi(1-\sqrt{E}) .
$$

This result is analytically continued to the complex domain for E. Then, the BohrSommerfeld quantization condition

$$
\widetilde{A}_{0}(E)=2 \pi i \hbar\left(n+\frac{1}{2}\right), \quad n=0, \pm 1, \pm 2, \ldots
$$

gives the approximate QNM eigenvalues

$$
E_{n}^{\mathrm{BS}}=\left[1-i \hbar\left(n+\frac{1}{2}\right)\right]^{2}
$$

(2) The second order corrections are given by

$$
\widetilde{A}_{2}(E)=\frac{1}{i} \oint_{C(a, b)} P_{2}(x) d x
$$

Show

$$
\widetilde{A}_{2}(E)=\left(\frac{E^{2}}{6} \frac{d^{2}}{d E^{2}}+\frac{E}{3} \frac{d}{d E}-\frac{1}{8}\right) \widetilde{A}_{0}(E)
$$

and solve the quantization condition

$$
\widetilde{A}_{0}(E)+\hbar^{2} \widetilde{A}_{2}(E)=2 \pi i \hbar\left(n+\frac{1}{2}\right), \quad n=0, \pm 1, \pm 2, \ldots
$$

(3) Compare the above second order result with the exact result:

$$
E_{n}=\left(\hbar \omega_{n}\right)^{2}=\left[\pm \sqrt{1-\frac{\hbar^{2}}{4}}-i \hbar\left(n+\frac{1}{2}\right)\right]^{2}, \quad n=0,1,2, \ldots
$$

