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Reconstructing the deformed prepotential
Let us treat the modified Mathieu equation:

(—h2d2 + 2A2 cosh x)w(x) = Ey(z).

dx?

The quantum period integrals are given by

1 T
Agi(E) :f Py (z)dx, AD (E) = 2/ Py (z)dx.
C(a,b) T J i

As I explain in the lecture, the dual quantum period A2Dk (E) is computed easily in the large
FE or the small A limit. This fact allows us to fix the deformed prepotential from the dual

quantum period as follows.
(1) The Riccati equation for the WKB solution is given by
P(z)? —ihP'(z) = Q(x).

For Q(x) = E — 2A? cosh x, we can solve this equation order by order in A. We assume

the perturbative expansion

P(z) =Y A"V, (z).
n=0

At the zero-th order (A = 0), we find two solutions Yy(z) = ++/F because it corresponds
to the free particle. Set Yy(x) = v/E, then the n-th order correction satisfies

_2VE

Y!(z) +ikY,(z) = R,(x), k- -

where R, (z) is determined by the lower order corrections. Confirm that
Y, (z) = e_”””/ e R, (z')da'

solves the above inhomogeneous differential equation.
(2) For n =1, we have

2
Ry(z) = 7 coshz.



Confirm that the special solution to this equation is given by

4v/E cosh x + 2ihsinh z
4F + h? ’

Yi(z) =

where we determined an integration constant so that the special solution does not

include the homogeneous solution e~ **.
(3) For n > 2, we have
1 n—1
Ry (2) = — > V(@) Yoo m().
m=1

Confirm that

4E? + 5Eh + h? + E(4E — 5h%) cosh 2z + iv/ER(8E — h?) sinh 2z
VE(E + h2?)(4F + h2)?

is a solution to the second order equation.

Ya(z) =

(4) Pushing this computation, we can find Y,,(z) systematically. Let us define

AP(E;h) =Y WAL (E).
k=0

This is formally written as

1 e o0 1 Fie)
AP(E;h) = — P(z)dr =) A*"—— Y, (x)dz.
B = o /_ () ;) omi /_ (e
Evaluating these integrals, we obtain

1 4 60E®+35ER* + 2n
VE(4FE + h2) AE3/2(E + h2)(4E + h?)3

AP(E;h) = VE — A%+ O(A?).

Now the quantum corrections are resummed! By solving this equation with respect to

E, we can express E in terms of a = AP(E;h). Moreover, by using

A OF(a; h)
F=——"
4  ON
we can finally reconstruct the deformed prepotential as
F(a;h) = f(a;h) —4a”log A — ——5 A" — A® 4+ O(A),

4a? + h? 4(a® + h?)(4a? + h2)3
where f(a;h) is a function depending on a and A but not on A. This part corresponds

to the “perturbative part” in the Nekrasov partition function. Confirm the above com-

putation by yourself.



A toy model for quasi-normal mode problems

Let us consider the following wave equation:

<d22W+1>

dx? " 9cosh?z

)¢($) =0 (£>0).

If the QNM boundary condition

W) ~ {e“” (z — o0)

e W (xr = —o0)

is imposed, then only the discrete complex values of w are allowed. In this toy model, the

exact QNM eigenvalues are known:

(l+1 1
wn, = * (e+1) z(

1
5 1 n—i—), n=0,1,2,...

2

See §4.1 in [Berti et al., arXiv: 0905.2975] for instance.
Here we treat this problem by the WKB method. We define

The wave equation now takes the form of the Schrodinger equation

o d? 1
h @‘*—E— Cosh2x ¢(x)20

(1) Assume 0 < E < 1. We want to compute the integral

b
~ /1 1
Ao(E) = 2/ ——— — Fdr = ]{ Py(z)dz,
a cosh” x v Je(ab)

where a and b are two real turning points with b = —a > 0. By changing the integration

variable, show N
Ay(E) = 27(1 = VE).

This result is analytically continued to the complex domain for E. Then, the Bohr-

Sommerfeld quantization condition

~ . 1

Ao(E) = 2mih n+§ , n=0,+1,+2,...
gives the approximate QNM eigenvalues

1 2
EBS = [1 —ih<n+ 2)]

3



(2) The second order corrections are given by

Jo(E) = 1740( | Pa(@dr

7
Show

~ E? d? E d 1
o) = (

G aE T 3dE S)AO(E)’

and solve the quantization condition

. - 1
Ao(E) + h*Ay(E) = 2m’h<n + 2), n=0,41,42,....

(3) Compare the above second order result with the exact result:

h2 1\1?
En:(hwn)Qz[i 1—4—ih<n—|—2>], n=0,1,2,....



