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4 Reconstructing the deformed prepotential

Let us treat the modified Mathieu equation:(
−ℏ2

d2

dx2
+ 2Λ2 coshx

)
ψ(x) = Eψ(x).

The quantum period integrals are given by

A2k(E) =

∮
C(a,b)

P2k(x)dx, AD
2k(E) =

1

2πi

∫ πi

−πi

P2k(x)dx.

As I explain in the lecture, the dual quantum period AD
2k(E) is computed easily in the large

E or the small Λ limit. This fact allows us to fix the deformed prepotential from the dual

quantum period as follows.

(1) The Riccati equation for the WKB solution is given by

P (x)2 − iℏP ′(x) = Q(x).

For Q(x) = E − 2Λ2 coshx, we can solve this equation order by order in Λ. We assume

the perturbative expansion

P (x) =

∞∑
n=0

Λ2nYn(x).

At the zero-th order (Λ = 0), we find two solutions Y0(x) = ±
√
E because it corresponds

to the free particle. Set Y0(x) =
√
E, then the n-th order correction satisfies

Y ′
n(x) + ikYn(x) = Rn(x), k :=

2
√
E

ℏ
,

where Rn(x) is determined by the lower order corrections. Confirm that

Yn(x) = e−ikx

∫ x

eikx
′
Rn(x

′)dx′

solves the above inhomogeneous differential equation.

(2) For n = 1, we have

R1(x) =
2

iℏ
coshx.
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Confirm that the special solution to this equation is given by

Y1(x) = −4
√
E coshx+ 2iℏ sinhx

4E + ℏ2
,

where we determined an integration constant so that the special solution does not

include the homogeneous solution e−ikx.

(3) For n ≥ 2, we have

Rn(x) =
1

iℏ

n−1∑
m=1

Ym(x)Yn−m(x).

Confirm that

Y2(x) = −4E2 + 5Eℏ+ ℏ2 + E(4E − 5ℏ2) cosh 2x+ i
√
Eℏ(8E − ℏ2) sinh 2x√

E(E + ℏ2)(4E + ℏ2)2

is a solution to the second order equation.

(4) Pushing this computation, we can find Yn(x) systematically. Let us define

AD(E; ℏ) :=
∞∑
k=0

ℏ2kAD
2k(E).

This is formally written as

AD(E; ℏ) =
1

2πi

∫ πi

−πi

P (x)dx =

∞∑
n=0

Λ2n 1

2πi

∫ πi

−πi

Yn(x)dx.

Evaluating these integrals, we obtain

AD(E; ℏ) =
√
E − 1√

E(4E + ℏ2)
Λ4 − 60E2 + 35Eℏ2 + 2ℏ4

4E3/2(E + ℏ2)(4E + ℏ2)3
Λ8 +O(Λ12).

Now the quantum corrections are resummed! By solving this equation with respect to

E, we can express E in terms of a = AD(E; ℏ). Moreover, by using

E = −Λ

4

∂F (a; ℏ)
∂Λ

,

we can finally reconstruct the deformed prepotential as

F (a; ℏ) = f(a; ℏ)− 4a2 log Λ− 2

4a2 + ℏ2
Λ4 − 20a2 − 7ℏ2

4(a2 + ℏ2)(4a2 + ℏ2)3
Λ8 +O(Λ12),

where f(a; ℏ) is a function depending on a and ℏ but not on Λ. This part corresponds

to the “perturbative part” in the Nekrasov partition function. Confirm the above com-

putation by yourself.
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5 A toy model for quasi-normal mode problems

Let us consider the following wave equation:(
d2

dx2
+ ω2 − ℓ(ℓ+ 1)

2 cosh2 x

)
ψ(x) = 0 (ℓ > 0).

If the QNM boundary condition

ψ(x) ∼

{
eiωx (x→ ∞)

e−iωx (x→ −∞)

is imposed, then only the discrete complex values of ω are allowed. In this toy model, the

exact QNM eigenvalues are known:

ωn = ±
√
ℓ(ℓ+ 1)

2
− 1

4
− i

(
n+

1

2

)
, n = 0, 1, 2, . . .

See §4.1 in [Berti et al., arXiv: 0905.2975] for instance.

Here we treat this problem by the WKB method. We define

ℏ =

(
2

ℓ(ℓ+ 1)

)1/2

, E = (ℏω)2.

The wave equation now takes the form of the Schrödinger equation(
ℏ2

d2

dx2
+ E − 1

cosh2 x

)
ψ(x) = 0.

(1) Assume 0 < E < 1. We want to compute the integral

Ã0(E) := 2

∫ b

a

√
1

cosh2 x
− E dx =

1

i

∮
C(a,b)

P0(x)dx,

where a and b are two real turning points with b = −a > 0. By changing the integration

variable, show

Ã0(E) = 2π(1−
√
E).

This result is analytically continued to the complex domain for E. Then, the Bohr-

Sommerfeld quantization condition

Ã0(E) = 2πiℏ
(
n+

1

2

)
, n = 0,±1,±2, . . .

gives the approximate QNM eigenvalues

EBS
n =

[
1− iℏ

(
n+

1

2

)]2
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(2) The second order corrections are given by

Ã2(E) =
1

i

∮
C(a,b)

P2(x)dx.

Show

Ã2(E) =

(
E2

6

d2

dE2
+
E

3

d

dE
− 1

8

)
Ã0(E),

and solve the quantization condition

Ã0(E) + ℏ2Ã2(E) = 2πiℏ
(
n+

1

2

)
, n = 0,±1,±2, . . . .

(3) Compare the above second order result with the exact result:

En = (ℏωn)
2 =

[
±
√

1− ℏ2
4

− iℏ
(
n+

1

2

)]2
, n = 0, 1, 2, . . . .
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