

いよいよ始まるJ-PARC実験

永江 知文

京都大学

K E K の 研究計 画

永宮さんのトラペ

 大型ハドロン計画と中性子科学研究計画の 推進に関する覚書

 JHF
 Neutron Facility

 大強度腸子加速器を用いた科学技術の総合的展開を図るために、高エネルギー加速

大強度騙子加速器を用いた科学技術の総合的展開を図るために、高エネルキー加速 器研究機構(以下「機構」という。)と日本原子力研究所(以下「原研」という。)

は、機構の大型ハドロン計画と原研の中性子科学研 た。本覚書は、機構と原研(以下「両機関」とい 定及び施設の建設に係る連携・協力を進めるため る。

J-PARC

なお、施設建設後の運営に関しては、別途協議

- 両機関は、大型ハドロン計画と中性子科学研 の東海研究所に建設するための統合計画を策算
- 両機関は、機構・原研の代表、ユーザーコミ 構成される協議委員会を設置し、統合計画の 協議委員会の意見を聴きつつ進める。
- 統合計画の推進は、機構の大型ハドロン計画
 学研究センターを中心に編成される「共同推進

平成11年3月18日

覚書調印式 JAERI KEK 松浦理事長(当時) 菅原機構長(当時)

中性子科学研究計画と大型ハドロン計画の 推進に関する覚書

大強度關子加速器を用いた科学技術の総合的展開を図るために、日本原子力研究所 以下「原研」という。)と高エネルギー加速器研究機構(以下「機構」という。)

> 機構の大型ハドロン計画を共同で推進することとし 「両機関」という。)が相互信頼に立って計画の策 」を進めるための基本的な考え方を定めるものであ

は、別途協議するものとする。

と大型ハドロン計画の加速器及び実験施設を原研 統合計画を策定する。

ユーザーコミュニティーの代表及び学識経験者で 、統合計画の推進にあたっての重要事項について める。

研究所中性子科学研究センターと機構の大型ハド れる「共同推進チーム」によって行う。

茨城県つくば市大穂1-1 高エネルギー加速器研究機構長 学 い

東京都千代田区内幸町2-2-2 日本原子力研究所理事長

松浦祥次界顾昌

茨城県つくば市大穂1-1 高エネルギー加速器研究機構長

Start of the Joint Project

- 1999.4: International Review
- 2000.8: 評価部会報告(約10ヶ月)[Domestic Review for 10 months]
- 2000.12: Approval of the Project
- 2001.5: Formation of the Project Team

協力協定覚書調印式 JAEA KEK 村上理事長(当時) 菅原機構長(当時)

2002.6:
Ground Breaking Ceremony

Ceremony in August, 2005 for the start of the J-PARC Center

研究機構

大強度陽子加速器施設の運営に関する基本協力協定署名式

子力研究所

(1)高エネル・

J-PARC

J-PARC

- 1986年以来の、我が国原子核物理コミュニティ悲願のプロ ジェクト
 - L 大ハドロン計画→大型ハドロン計画(JHP→JHF)→大強度陽子加速
 器計画(統合計画)→J-PARC

いよいよ

■ 東京大学原子核研究所→高エネルギー加速器研究機構・素粒子原 子核研究所

Phase 1:→ Total 1,500 Oku-Yen (56% JAEA, 44% KEK)!

J-PARC Facility (KEK/JAEA) South to North

Hadron Exp.

Facility

Neutrino Beams (to Kamioka)

Materials and Life Experimental Facility

Linac

Synchrotron

50 Gev Synchrotron

Bird's eye photo in January of 2008

ハドロンホールへのビーム取 り出し成功:2009年1月27日

ハドロン実験ホール

Preparation of Experimental Area

Left-hand side from the upstream

Photo taken June 2009

K1.8 Experimental Area

S=-2 Hypernuclei via (K⁻,K⁺) reactions

U

K1.8 Beam line

Experiments on Strangeness Nuclear Physics

- Five Day-1 Experiments
 - E05: E hypernuclei Spectroscopy (Nagae)
 - E13: Hypernuclear γ -ray Spectroscopy (Tamura)
 - E15: Search for K⁻pp bound state (Iwasaki, Nagae)
 - E17: Kaonic ³He 3d→2p X-ray (Hayano, Outa)
 - E19: Search for Penta-quark in $\pi^-p \rightarrow K^-X$ reaction (Naruki)
 - E07: Hybrid-Emulsion for Double- Λ (Imai, Nakazawa, Tamura)
 - E03: Ξ-atom X rays (Tanida)
 - and more ...

[1st priority]

[2nd priority]

K中間子で sクォークを埋め込む

The

Spectroscopic Study of Ξ -Hypernucleus, ${}^{12}{}_{\Xi}$ Be, via the ${}^{12}C(K^-,K^+)$ Reaction E05 T. Nagae et al.

- Discovery of E-hypernuclei
- Measurement of ±-nucleus potential depth and width of ¹²_±Be
- Beam: K⁻ @ 1.8 GeV/c, 1.4x10⁶/spill
- $CH_2 \sim 2 \text{ g/cm}^2$: 2 weeks for tuning and calibrations
- ¹²C 5.4 g/cm² : 4 weeks
- Setup: K1.8 & SKS+

Unique experiment at J-PARC : No other place can do this experiment !

Purpose of the experiment

- First Spectroscopic Study of S=-2 systems in (K⁻,K⁺) reaction
 - Ξ -hypernuclei → double- Λ hypernuclei
 - $\blacksquare \quad \Xi p \Lambda \Lambda \text{ mixing}$
 - First step for multi-strangeness baryon systems
- **EN Interactions: almost no information**
 - Attractive or repulsive $? \rightarrow$ potential depth
 - $\Xi p \rightarrow \Lambda \Lambda$ conversion ? \rightarrow conversion width
 - Isospin dependence ? \rightarrow Lane term($\tau_{\Xi} \bullet \tau_{C}/A$)

Strangeness Nuclear Physics

Purpose of the experiment

- First Spectroscopic Study of S=-2 systems in (K⁻,K⁺) reaction
 - **E**-hypernuclei \rightarrow double- Λ hypernuclei
 - $\blacksquare \quad \Xi p \Lambda \Lambda \text{ mixing}$
 - First step for multi-strangeness baryon systems
- **EN** Interactions: almost no information
 - Attractive or repulsive $? \rightarrow$ potential depth
 - $\Xi p \rightarrow \Lambda \Lambda$ conversion ? \rightarrow conversion width
 - Isospin dependence ? \rightarrow Lane term($\tau_{\Xi} \bullet \tau_{C}/A$)

S=-2 Baryon Systems

Energy Spectrum of S=-2 systems

Purpose of the experiment

- First Spectroscopic Study of S=-2 systems in (K⁻,K⁺) reaction
 - **E**-hypernuclei \rightarrow double- Λ hypernuclei
 - $\blacksquare \quad \Xi p \Lambda \Lambda \text{ mixing}$
 - First step for multi-strangeness baryon systems
- **EN** Interactions: almost no information
 - Attractive or repulsive $? \rightarrow$ potential depth
 - $\Xi p \rightarrow \Lambda \Lambda$ conversion ? \rightarrow conversion width
 - Isospin dependence ? \rightarrow Lane term($\tau_{\Xi} \bullet \tau_{C}/A$)

Ξ hypernuclei potential ? Λ, Σ, Ξ, K in Neutron Star Core ?

 $U \Sigma < 0, U \Xi < 0$

 $U \Sigma > 0, U \Xi < 0$

 $U \Sigma > 0, U \Xi > 0$

Purpose of the experiment

- First Spectroscopic Study of S=-2 systems in (K⁻,K⁺) reaction
 - Ξ -hypernuclei \rightarrow double- Λ hypernuclei
 - $\blacksquare \quad \Xi p \Lambda \Lambda \text{ mixing}$
 - First step for multi-strangeness baryon systems
- **Ξ**N Interactions: almost no information
 - Attractive or repulsive $? \rightarrow$ potential depth
 - $\Xi p \rightarrow \Lambda \Lambda$ conversion ? \rightarrow conversion width
 - Isospin dependence ? \rightarrow Lane term($\tau_{\Xi} \bullet \tau_{C}/A$)

SKS+ Spectrometer

UNID

¹⁰B(K⁻,K⁺)¹⁰_ΞLi by Hiyama

Formation of High Density State

A.Dote et al., PRC70 (2004) 044313.

 $\rho > \rho_0 x 10 !?$

Formation of Cold(T=0) and Dense($\rho > 5 \rho_0$) nuclear matter

Chiral symmetry restorationKaon condensation

T. Hatsuda and T. Kunihiro, Phys. Rev. Lett. **55** (1985) 158. W. Weise, Nucl. Phys. **A443** (1993) 59c.

In-flight (K⁻,n) reaction on ³He

K1.8BRビームライン: 2009年2月

(K⁻,n) missing mass spectrum calculated by T. Koike & T. Harada

FIG. 1: The calculated inclusive spectra of the ³He(in-flight K^-,n) reaction at $p_{K^-} = 1.0 \text{ GeV/c}$ and $\theta_n = 0^\circ$ as a function of the neutron momentum, using the YA optical potential with $(V_0,$

 $W_0) = (-300 \text{ MeV}, -70 \text{ MeV})$. The vertical dashed line indicates the corresponding neutron momentum of $p_n = 1224 \text{ MeV/c}$ at the K^- emitted threshold. The contributions of partial-wave

High-resolution Search for Θ^+ Pentaquark in $\pi^-p \rightarrow K^-X$ Reaction

M. Naruki et al., KEK

実験の概要

- natural expansion of E522 ($\pi p \rightarrow KX@K2$)
- ~5 times better resolution : ~ 2.5MeV FWHM with SKS
 - 10 times better S/N
- 100 times larger yield : 1.2 X 10⁴ Θ^+ with 20 shifts
- •expected sensitivity (lab) 75nb/sr Γ < 2 MeV \rightarrow σ_{tot} ~112nb 150nb/sr Γ = 10 MeV
- momentum dependence of cross section : p_{π} =(1.87,1.92,1.97GeV/c) - Goal confirm Θ^+ existence with high statistics

Summary

- J-PARC Construction: 2001 ~ 2008
 - Beam commissioning: LINAC(Oct., 06), RCS(Oct., 07), MR(May, 08)
 - First Beam at Hadron Hall: Feb. 2009
- Day-1 Experiments in preparation
 - Ξ hypernuclei
 - Deeply-bound Kaonic nuclei
 - Hypernuclear gamma-ray spectroscopy
 - etc.

Join us !

International School on Strangeness Nuclear Physics

- 9月10日(木)-12日(土)
- 京大基研パナソニックホール
- 講師: A. Gal, A. Ramos, J. Mares, Ed Hungerford, K. Imai, T. Motoba
- <u>hypXschool@nexus.kek.jp</u>へ申し込みを
 - ▶ 旅費補助あり