Scattering • Resonance • Bound states on lattice

— including review -

Takeshi YAMAZAKI
Center for Computational Sciences
University of Tsukuba

Strangeness workshop @ KKR Hotel Atami
February 27th, 2009

1. Introduction

Motivation : Understand hadron interactions from (lattice) QCD

We need to study not only scattering state, but resonance (bound) state on lattice, simultaneously.

Review
Resent results of a_{0} and $\delta(p)$ from Lüscher's finite volume method Proposed methods for resonance (bound) state

Outline

1. Introduction
2. Finite volume method
3. Scattering state
4. Resonance state
5. Bound state
6. More complex scattering state
7. Summary

2. Finite volume method

Finite volume L^{3} in center of mass system with periodic boundary condition in spatial directions

$$
\mathbf{p}=2 \pi / L \cdot \mathbf{n}
$$

Important assumption

1. Two-pion interaction is localized.
\rightarrow Interaction range R exists.

$$
V_{p}(r) \begin{cases}\neq 0 & (r \leq R) \\ =0 & \left(\sim e^{-c r}\right)(r>R)\end{cases}
$$

2. $V_{p}(r)$ is not affected by boundary. $\rightarrow R<L / 2$

Two-particle wave function $\phi(\mathrm{r})$ satisfies Helmholtz equation

$$
\left(\nabla^{2}+p^{2}\right) \phi(\mathbf{r})=0 \text { in } r>R(R<L / 2)
$$

from Klein-Gordon eq. of two-particle (in c.m. frame)

2. Finite volume method

Helmholtz equation on L^{3}

$$
\left(\nabla^{2}+p^{2}\right) \phi(\mathbf{r})=0, \quad p^{2}=\left(E^{2}-4 m^{2}\right) / 4 \neq(2 \pi / L \cdot \mathbf{n})^{2}
$$

1. Solution in $r>R$

$$
\phi(\mathbf{r})=C \cdot \sum_{\mathbf{n} \in Z^{3}} \frac{e^{i \mathbf{r} \cdot \mathbf{n}(2 \pi / L)}}{\mathbf{n}^{2}-q^{2}}, \quad q^{2}=\left(\frac{L p}{2 \pi}\right)^{2} \neq n
$$

2. Expansion by spherical Bessel $j_{l}(p r)$ and Noeman $n_{l}(p r)$ functions

$$
\phi(\mathrm{r})=\beta_{0}(p) n_{0}(p r)+\alpha_{0}(p) j_{0}(p r)+(l \geq 1)
$$

3. S-wave Scattering phase shift $\delta_{0}(p)$ in infinite volume

$$
\begin{aligned}
\tan \delta_{0}(p)= & \frac{\beta_{0}(p)}{\alpha_{0}(p)}=\frac{\pi^{3 / 2} q}{Z_{00}\left(1 ; q^{2}\right)} \\
& Z_{00}\left(1 ; q^{2}\right)=\frac{1}{\sqrt{4 \pi}} \sum_{\mathbf{n} \in Z^{3}} \frac{1}{\mathbf{n}^{2}-q^{2}}
\end{aligned}
$$

Note: $\phi(\mathbf{r})$ can be calculated from lattice QCD.
\rightarrow Sasaki's talk, Hatsuda's talk and Nemura's talk

2. Finite volume method

δ_{0} from $E^{2}=4\left(m^{2}+p^{2}\right)$

$$
\tan \delta_{0}(p)=\frac{\pi^{3 / 2} q}{Z_{00}\left(1 ; q^{2}\right)}, \quad q^{2}=\left(\frac{L p}{2 \pi}\right)^{2}
$$

Lüscher NPB354 531(1991)

Expand around $p \approx 0\left(a_{0}=\lim _{p \rightarrow 0} \delta_{0}(p) / p\right)$

$$
\begin{aligned}
& E_{0}-2 m=-\frac{4 \pi a_{0}}{m L^{3}}\left(1+c_{1} \frac{a_{0}}{L}+c_{2} \frac{a_{0}^{2}}{L^{2}}\right)+O\left(1 / L^{6}\right) \\
& \quad c_{1}=-2.837297, c_{2}=6.375183 \text { Lüscher CMP105 153(1986) }
\end{aligned}
$$

$\Delta E=E_{n}-E_{n}^{\text {free }} ; E_{n}^{\text {free }}=2 \sqrt{m^{2}+\left(2 \pi / L \cdot \mathbf{n}^{2}\right)}$
Sign of ΔE depends on interaction

ΔE	interaction	$\tan \delta_{0}$ or a_{0}
>0	repulsive	<0
<0	attractive	>0

Scattering state

Continuous state in infinite volume
\rightarrow
discrete state in finite volume

No interaction case

$$
E^{2}=4\left(m^{2}+(2 \pi / L \cdot \mathbf{n})^{2}\right)
$$

Scattering state

Continuous state in infinite volume
\rightarrow
discrete state in finite volume

No interaction case

$$
E^{2}=4\left(m^{2}+(2 \pi / L \cdot \mathbf{n})^{2}\right)
$$

Repulsive interaction $a_{0}<0$

$$
\Delta E>0
$$

Scattering state

Continuous state in infinite volume
\rightarrow
discrete state in finite volume

No interaction case

$$
E^{2}=4\left(m^{2}+(2 \pi / L \cdot \mathbf{n})^{2}\right)
$$

Repulsive interaction $a_{0}<0$

$$
\Delta E>0
$$

Attractive interaction $a_{0}>0$ $\Delta E<0$

Scattering states

Previous works of scattering state

1. $I=2 \pi \pi$ channel (a_{0} and δ_{0})

'92	Sharpe, Gupta and Kilcup	'04	CP-PACS Collaboration
'93	Gupta, Patel and Sharpe		Du, Meng, Miao and Liu
	Kuramashi et al.	'05	CP-PACS Collaboration
'99	JLQCD Collaboration		BGR Collaboration
'02 Liu, Zhang, Chen and Ma		NPLQCD Collaboration	
	JLQCD Collaboration	'07	CLQCD Collaboration
'03	BGR Collaboration	'08	NPLQCD Collaboration
	CP-PACS Collaboration		Sasaki, Ishizuka
	Kim		Yamazaki

2. $I=3 / 2(1 / 2) K \pi$ channel \longrightarrow Muroya's talk

| '04 Miao, Du, Meng, Liu | '08 | Nagata, Muroya, Nakamura |
| :---: | :---: | :---: | :---: |
| '06 NPLQCD | on going | Sasaki, Ishizuka |

3. $I=1 K K$ channel
'08 NPLQCD

Previous works of scattering state (cont'd)

4. $\left(\eta_{c}, J / \psi\right)-(\pi, \rho, n)$ channel
'06 Yokokawa, Sasaki, Hatsuda, Hayashigaki '08 Liu, Lin, Orginos
5. ${ }^{1} S_{0},{ }^{3} S_{1} n n$ channel \longrightarrow Hatsuda's talk '95 Fukugita, Kuramashi, Okawa, Miho, Ukawa '07 Ishii, Aoki, Hatsuda '06 Beane, Bedaque, Orginos, Savage
6. $n \Sigma, n \wedge, n \equiv$ channel \longrightarrow Nemura's talk

> '07 NPLQCD '08 Nemura, Ishii, Aoki, Hatsuda
$\pi n, K n, \cdots$ etc.
S-wave $I=2 \pi \pi a_{0}$ in $1 / a=1.6 \mathrm{GeV}$

$$
\begin{aligned}
\text { with DWF valence on } N_{f} & =2+1 \text { imp-staggered sea } \\
& \prime 08 \text { NPLQCD Collaboration }
\end{aligned}
$$

Result is almost consistent with LO ChPT.

$$
\begin{gathered}
a_{0} m_{\pi}=-\frac{m_{\pi}^{2}}{8 f_{\pi}^{2}}\left\{1+\frac{m_{\pi}^{2}}{16 \pi^{2} f_{\pi}^{2}}\left[3 \ln \left(m_{\pi}^{2} / \mu^{2}\right)-l(\mu)-\frac{\Delta_{j u}^{4}}{6 m_{\pi}^{4}}\right]\right\} \\
\Delta_{j u}^{4} \equiv 2 B_{0}\left(m_{\text {sea }}^{j}-m_{\mathrm{val}}^{u}\right)+a^{2} \Delta_{I}+\cdots
\end{gathered}
$$

S-wave $I=2 \pi \pi a_{0}$ in $1 / a=1.6 \mathrm{GeV}$
with DWF valence on $N_{f}=2+1$ imp-staggered sea '08 NPLQCD Collaboration

S-wave a_{0} of $I=3 / 2 K \pi$ and $I=1 K K$ in $1 / a=1.6 \mathrm{GeV}$

$$
\begin{array}{r}
\text { with DWF valence on } N_{f}=2+1 \text { imp-staggered sea } \\
\text { '06 '08 NPLQCD Collaboration }
\end{array}
$$

Result is roughly consistent with LO ChPT.
S-wave $I=2 \pi \pi \delta(p)$ in $a=0$ with $N_{f}=2$ imp-Wilson '04 CP-PACS Collaboration

The symbols are the experimental data. (Hoogland et al., Lostyet al.)
The solid line is parametrized by experimental input. (Colangelo et al.)
Result is almost consistent with experimental data.
Large error from $a \rightarrow 0$ extrapolation
'07 Ishii et al.

Action and β are same in two works, but volume is different. Lightest m_{π} of Kuramashi et al. = Heaviest m_{π} of Ishii et al. Large finite volume effect?
need detail study of systematic errors lighter pion mass, larger volume, other systematic error?

Resonance state

Scattering + resonance states

Resonance state with Γ in infinite volume
\rightarrow
discrete state in finite volume

Energy is always real in finite volume.
$\rightarrow \Gamma$ does not appear in E

Energy shift in finite volume
$\tan \delta_{0}<0 \rightarrow \Delta E>0$
$\tan \delta_{0}>0 \rightarrow \Delta E<0$

Scattering + resonance states

$\delta(\sqrt{s})$ in infinite volume from E on finite volume

Scattering + resonance states

'91 Lüscher; '94 Göckeler et al.

$$
\cot \delta\left(M_{\mathrm{res}}\right)=0 \Rightarrow \delta\left(M_{\mathrm{res}}\right)=\pi / 2
$$

$$
\Gamma=\left.\tan \delta(\sqrt{s}) \frac{M_{\mathrm{res}}^{2}-s}{M_{\mathrm{res}}}\right|_{\sqrt{s}=M_{\mathrm{res}}}
$$

Previous works of resonance state

- $I=1 \pi \pi \rightarrow \rho$ channel
'84 Gottlieb, Machenzie, Thacker, Weingarten
'89 Loft, DeGrand
'03 McNeile, Michael
'07 CP-PACS Collaboration
'08 Bernard, Meißner, Rusetsky (proposed method)

1. Decay amplitude $\left(m_{\pi} / m_{\rho}>0.5\right)$

$$
\langle 0| \rho(t) \pi \pi(0)|0\rangle \sim\left[1+t\langle\rho \mid \pi \pi\rangle+O\left(t^{2}\right)\right] \times e^{-m_{\rho} t}
$$

2. δ from $E \rightarrow m_{\rho}$ and Γ
3. Discrete probability distribution $(\pi n \rightarrow \Delta)$
need huge number of data (volume and momentum)

- $S=1 \mathrm{Kn} \rightarrow \Theta^{+}$channel
'03 Csikor, Fodor, Katz, Kovacs
'04 Sasaki
'05 Takahashi, Umeda, Onogi, Kunihiro Okiharu, Suganuma, Takahashi
'05 Ishii, Doi, Nemoto, Oka, Suganuma Lassock et al.
'06 Alexandrou, Tsapalis Csikor, Fodor, Katz, Kovacs, Toth ...

P-wave $I=1 \pi \pi \delta(p)$ at $m_{\pi}=0.33 \mathrm{GeV}$ with $N_{f}=2$ full QCD

'07 CP-PACS Collaboration

Breit-Wigner form

$$
\begin{aligned}
& \tan \delta(p)=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{p^{3}}{\sqrt{s}\left(m_{\rho}^{2}-s\right)} \\
& g_{\rho \pi \pi}=6.25(67) \\
& m_{\rho} a=0.851(24)
\end{aligned}
$$

At physical point

$$
\begin{gathered}
\Gamma=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{\left(p_{\rho}^{\mathrm{ph}}\right)^{3}}{\left(m_{\rho}^{\mathrm{ph}}\right)^{2}}=162(35) \mathrm{MeV} \\
\left(p_{\rho}^{\mathrm{ph}}\right)^{2}=\left(\left(m_{\rho}^{\mathrm{ph}}\right)^{2}-4\left(m_{\pi}^{\mathrm{ph}}\right)^{2}\right) / 4 \\
\Gamma_{\exp }=150 \mathrm{MeV}
\end{gathered}
$$

Bound state

Scattering + bound states

Continuous state in infinite volume
\rightarrow
discrete state in finite volume

Positive binding energy

$$
\Delta E_{B}=2 m-M_{B}
$$

Bound state isolated in infinite volume
one of discrete states in finite volume

Scattering + bound states

Problem

If $\Delta E_{B} \approx 0$, like dueteron $\Delta E_{B}=2 \mathrm{MeV}$, hard to identify bound state in finite volume

Similar energy shift $(\triangle E<0)$ in attractive system

Scattering + bound states

Problem

> If $\Delta E_{B} \approx 0$, like dueteron $\Delta E_{B}=2 \mathrm{MeV}$, hard to identify bound state in finite volume

Similar energy shift $(\triangle E<0)$
in attractive system
Solutions

1. Volume dependence
$\Delta E_{B} \neq 0$ but $\Delta E_{0} \rightarrow 0$ in $L \rightarrow \infty$ '04 Beane et al.

Scattering + bound states

Problem

If $\Delta E_{B} \approx 0$, like dueteron $\Delta E_{B}=2 \mathrm{MeV}$, hard to identify bound state in finite volume

Similar energy shift $(\Delta E<0)$ in attractive system

Solutions

1. Volume dependence
$\Delta E_{B} \neq 0$ but $\Delta E_{0} \rightarrow 0$ in $L \rightarrow \infty$ '04 Beane et al.
2. First excited state energy

Scattering + bound states

$$
a_{0}<0 \text { when one bound state exists. }
$$

Levinson's theorem

Plots from NN-OnLine (http://nn-online.org/)
$n p^{3} S_{1}$ scattering has negative scattering length.

Scattering + bound states

Problem

If $\Delta E_{B} \approx 0$, like dueteron $\Delta E_{B}=2 \mathrm{MeV}$, hard to identify bound state in finite volume

Similar energy shift $(\Delta E<0)$ in attractive system

Solutions

1. Volume dependence
$\Delta E_{B} \neq 0$ but $\Delta E_{0} \rightarrow 0$ in $L \rightarrow \infty$ '04 Beane et al.
2. First excited state energy
$E_{1} \sim 2 m$ and $\Delta E_{1}>0$ but $E_{1} \sim 4\left(m^{2}+p_{1}^{2}\right)$
'06 Sasaki and TY

Two-particle energy on finite volume '06 Sasaki and TY Effective model QED (Abelian-Higgs) with Scalar field $\left|\Phi_{x}\right|=1$ Easy to control bound state formation with charge Q of fermion

Large binding energy case $\Delta E_{B}=2 m-M_{B} \sim 1.0-0.76=0.24$

Two-particle energy on finite volume '06 Sasaki and TY Effective model QED (Abelian-Higgs) with Scalar field $\left|\Phi_{x}\right|=1$ Easy to control bound state formation with charge Q of fermion Small binding energy case $\Delta E_{B}=2 m-M_{B} \sim 1.0-0.99=0.01$

Significant difference in first excited state. \Rightarrow Signal of bound state formation

More complex scattering states

Scattering + scattering states (S-wave $I=0 \pi \pi+K K$)

Continuous state in infinite volume
\rightarrow
discrete state in finite volume

$$
\begin{aligned}
& 2 m_{\pi}<E<2 m_{K} \\
& E \leftrightarrow \delta(E) \\
& 2 m_{K}<E
\end{aligned} \quad \begin{aligned}
& E \leftrightarrow \delta_{\pi \pi}(E), \delta_{K K}(E), \eta(E) \\
& \quad 05 \mathrm{He} \text {, Feng, Liu }
\end{aligned}
$$

Scattering + resonance + scattering states

$$
\text { (S-wave } I=0 \pi \Sigma+\wedge(1405)+K n)
$$

Continuous state in infinite volume
\longrightarrow
discrete state in finite volume

$$
\begin{gathered}
m_{\pi}+m_{\Sigma}<E<m_{K}+m_{n} \\
E \leftrightarrow \delta(E)
\end{gathered}
$$

At least we can determine $a_{0}, m_{\wedge(1405)}, \Gamma_{\wedge(1405)}$
$m_{K}+m_{n}<E$
Too complicated
further study needed

Summary

Scattering state
$a_{0}: \pi \pi, K K, \pi K$ in highest I channel comparing with ChPT
$\delta_{0}: \pi \pi$ in $I=2$ with $N_{f}=2$ at $a=0$
$a_{0}: n n$ in ${ }^{1} S_{0}$ and ${ }^{3} S_{1}$
large systematic uncertainty \rightarrow detail study needed
Resonance state
$\delta: P$-wave $I=1 \pi \pi \rightarrow \rho$
Breit-Wigner form $\rightarrow m_{\rho}$ and Γ
Bound state
Problem of dueteron $\Delta E_{D}=2 \mathrm{MeV}$
Method to identify bound state formation
Volume dependence and first excited state energy
More complex scattering S-wave $I=0 \pi \Sigma+\Lambda(1405)+K n$ too complicated

At least we could obtain $a_{0}^{\pi \Sigma}, \delta_{\pi \Sigma}$ with present knowledge
Multi-meson scattering state $\rightarrow \mu_{K^{-}}=\left.\frac{d E_{n K}}{d n}\right|_{V=\text { const. }}$

Backup Slides

Two-particle wave function on finite volume

Balog et al., RRD60:094508(1999); CP-PACS, PRD71:094504(2005); Aoki et al., PRL99:022001(2007);

S-wave wave function in large r region

$$
\begin{aligned}
\phi_{p}(\vec{r}) & =\langle 0| f(r) f(0)|f f ; p\rangle \quad\left(p^{2}=E^{2} / 4-m^{2}\right) \\
& \sim \frac{\sin (p r+\delta(p))}{p r} \quad \text { (scattering state) } \\
& \sim \exp (-\gamma r) \quad \text { (bound state) }
\end{aligned}
$$

Large difference in $\phi_{p}(\vec{r})$
bound state \leftrightarrow scattering state
scattering state: $a_{0}>0 \leftrightarrow a_{0}<0$

Two-particle wave function on finite volume

Effective model

QED (Abelian-Higgs) with Scalar field $\left|\Phi_{x}\right|=1$
Easy to control bound state formation with charge Q of fermion

Calculate $\phi_{p}(\vec{r})$ of lower two states of S-wave $\bar{f} f$ state, like meson, with different charge $Q=3,4$

sys.		a_{0}	$n=0$	$n=1$
W/o	bound	+	$p \sim 0$	$p \sim 2 \pi / L$
W/ bound	-	bound	$p \sim 0$	

Wave function $\phi_{p}(\vec{r}) / \phi_{p}(r=5)(Q=3,4)$

Different $\phi_{p}(\vec{r})$ for each state as expected

sys.		a_{0}	$n=0$	$n=1$
W/o bound	+	$p \sim 0$	$p \sim 2 \pi / L$	
w/ bound	-	bound	$p \sim 0$	

Consistent with $M-2 m=0.75-2 \times 0.5 \approx-0.25(Q=4)$ Wave function might be a candidate to identify bound state.

One-dimension L case with periodic boundary condition
Two-pion wave function $\Phi(r)$ satisfies periodic boundary condition. Free case

Interacting case

p^{2} has information of $\delta(p)$.

2.2 Diagonalization method

Problem on lattice (c.m. frame)
pion four-point function

$$
\begin{aligned}
G_{n m}(t) & =\langle 0| \Omega_{n}(t) \Omega_{m}(0)|0\rangle, \quad \Omega_{i}=\pi\left(\mathbf{p}_{n}\right) \pi\left(-\mathbf{p}_{m}\right) \\
& =\sum_{\alpha} V_{\alpha n} V_{\alpha m}^{t} e^{-E_{\alpha} t}, \quad V_{\alpha n}=\left\langle\overline{\pi \pi} \bar{\sigma}_{\alpha}\right| \Omega_{n}|0\rangle \\
& \rightarrow V_{0 n} V_{0 m}^{t} e^{-E_{0} t}, \quad t \rightarrow \infty \\
\Omega_{n} & : \text { two-pion operator }\left(p_{n}^{2}=(2 \pi / L \cdot \mathbf{n})^{2}\right) \\
\left\langle\overline{\pi \pi_{\alpha} \mid}\right. & : \alpha \text {-th two-pion state }
\end{aligned}
$$

Four-point function behaves a multiexponential form. We cannot obtain $E_{\alpha}(\alpha \neq 0)$ by single exponential fit.

2.2 Diagonalization method

pion four-point function $G_{n m}(t)$
'04 CP-PACS Collaboration

All $G_{n m}$ have same slope in $t \gg 1$.

Diagonalization of four-point function matrix

Lüscher and Wolff, Nucl. Phys. B339 222(1990)
pion four-point function matrix

$$
G_{n m}(t)=\langle 0| \Omega_{n}(t) \Omega_{m}(0)|0\rangle
$$

$$
\begin{aligned}
& M\left(t, t_{0}\right) w_{\nu}=\lambda_{\nu}\left(t, t_{0}\right) w_{\nu} \\
& \lambda_{\nu}\left(t, t_{0}\right)=\exp \left(-E_{\nu}\left(t-t_{0}\right)\right) \\
& M\left(t, t_{0}\right)=G^{-1}\left(t_{0}\right) G(t) \text { with } t_{0}: \text { reference point } \\
& \text { We can extract } E_{\nu \neq 0} \text { from } \lambda_{\nu}\left(t, t_{0}\right) .
\end{aligned}
$$

In actual calculation $G(t): N \times N$ matrix assumption : $N+1$-th state contribution is negligible

Other methods
Anti-periodic boundary condition
'04 Kim
Non-zero total momentum $\pi\left(\mathbf{p}_{1}\right) \longrightarrow \leftarrow \pi\left(\mathbf{p}_{2}\right) \quad$ '95 Rummukainen and Gottlieb

Discrete probability distribution $(\pi n \rightarrow \Delta)$
'08 Bernard, Meißner, Rusetsky

No resonance parametrization of infinite volume scattering phase
$W(p): \#$ of state in a fixed p bin $W_{\text {free }}(p)$: \# of state in a fixed p bin in free case

$$
m_{\Delta} \text { from } W(p)-W_{\text {free }}(p)
$$

