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1. Introduction

Motivation :
Understand hadron interactions from (lattice) QCD

We need to study not only scattering state, but resonance (bound) state

on lattice, simultaneously.

Review

Resent results of a0 and δ(p) from Lüscher’s finite volume method

Proposed methods for resonance (bound) state
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2. Finite volume method
Lüscher, CMP105 153(1986)

NPB354 531(1991)

Finite volume L3 in center of mass system

with periodic boundary condition in spatial directions

p = 2π/L · n
Important assumption

1. Two-pion interaction is localized.

→ Interaction range R exists.

Vp(r)

{

6= 0 (∼ e−cr)(r ≤ R)
= 0 (∼ e−cr)(r > R)

2. Vp(r) is not affected by boundary. → R < L/2

V(r)=0

V(r)=0

R

L

Two-particle wave function φ(r) satisfies Helmholtz equation
(

∇2 + p2
)

φ(r) = 0 in r > R (R < L/2)

from Klein-Gordon eq. of two-particle (in c.m. frame)
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2. Finite volume method

Helmholtz equation on L3

(∇2 + p2)φ(r) = 0, p2 = (E2 − 4m2)/4 6= (2π/L · n)2

1. Solution in r > R

φ(r) = C ·
∑

n∈Z3

eir·n(2π/L)

n2 − q2 , q2 =

(

Lp

2π

)2

6= n

2. Expansion by spherical Bessel jl(pr) and Noeman nl(pr) functions

φ(r) = β0(p)n0(pr) + α0(p)j0(pr) + (l ≥ 1)

3. S-wave Scattering phase shift δ0(p) in infinite volume

tan δ0(p) =
β0(p)

α0(p)
=

π3/2q

Z00(1; q2)

Z00(1; q2) =
1√
4π

∑

n∈Z3

1

n2 − q2

Note: φ(r) can be calculated from lattice QCD.

→ Sasaki’s talk, Hatsuda’s talk and Nemura’s talk
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2. Finite volume method

δ0 from E2 = 4(m2 + p2)

tan δ0(p) =
π3/2q

Z00(1; q2)
, q2 =

(

Lp

2π

)2

Lüscher NPB354 531(1991)

Expand around p ≈ 0 (a0 = limp→0 δ0(p)/p)

E0 − 2m = −4πa0
mL3

(

1 + c1
a0
L

+ c2
a20
L2

)

+O(1/L6)

c1 = −2.837297, c2 = 6.375183 Lüscher CMP105 153(1986)

∆E = En − Efree
n ; Efree

n = 2
√

m2 + (2π/L · n2)

Sign of ∆E depends on interaction

∆E interaction tan δ0 or a0
> 0 repulsive < 0

< 0 attractive > 0
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Scattering state

0

1

2 continuous state

threshold 2m

infinite V finite V

Continuous state in infinite

volume

→
discrete state in finite vol-

ume

No interaction case

E2 = 4(m2 + (2π/L · n)2)

Repulsive interaction a0 < 0

∆E > 0

Attractive interaction a0 > 0

∆E < 0
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Scattering states
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Previous works of scattering state

1. I = 2 ππ channel (a0 and δ0)

’92 Sharpe, Gupta and Kilcup ’04 CP-PACS Collaboration
’93 Gupta, Patel and Sharpe Du, Meng, Miao and Liu

Kuramashi et al. ’05 CP-PACS Collaboration
’99 JLQCD Collaboration BGR Collaboration
’02 Liu, Zhang, Chen and Ma NPLQCD Collaboration

JLQCD Collaboration ’07 CLQCD Collaboration
’03 BGR Collaboration ’08 NPLQCD Collaboration

CP-PACS Collaboration Sasaki, Ishizuka
Kim Yamazaki

2. I = 3/2 (1/2) Kπ channel −→ Muroya’s talk

’04 Miao, Du, Meng, Liu ’08 Nagata, Muroya, Nakamura
’06 NPLQCD on going Sasaki, Ishizuka

3. I = 1 KK channel

’08 NPLQCD
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Previous works of scattering state (cont’d)

4. (ηc, J/ψ)− (π, ρ, n) channel

’06 Yokokawa, Sasaki, Hatsuda, Hayashigaki ’08 Liu, Lin, Orginos

5. 1S0,
3S1 nn channel −→ Hatsuda’s talk

’95 Fukugita, Kuramashi, Okawa, Miho, Ukawa ’07 Ishii, Aoki, Hatsuda
’06 Beane, Bedaque, Orginos, Savage

6. nΣ, nΛ, nΞ channel −→ Nemura’s talk

’07 NPLQCD ’08 Nemura, Ishii, Aoki, Hatsuda

πn, Kn, · · · etc.
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S-wave I = 2 ππ a0 in 1/a = 1.6 GeV

with DWF valence on Nf = 2 + 1 imp-staggered sea

’08 NPLQCD Collaboration

1 2 3 4

mπ / fπ

-0.5

-0.4

-0.3

-0.2

-0.1

0

m
π

 a
π+

π+

MA χ - PT  (One Loop)

 χ - PT  (Tree Level)

CP-PACS (2004)  (nf = 2)

E 865 (2003)

NPLQCD 

Result is almost consistent with LO ChPT.

a0mπ = −m
2
π

8f2
π







1 +
m2
π

16π2f2
π



3 ln
(

m2
π/µ

2
)

− l(µ)−
∆4
ju

6m4
π











∆4
ju ≡ 2B0(m

j
sea −mu

val) + a2∆I + · · ·
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S-wave I = 2 ππ a0 in 1/a = 1.6 GeV

with DWF valence on Nf = 2 + 1 imp-staggered sea

’08 NPLQCD Collaboration

1 2 3 4

mπ / fπ

-0.5

-0.4

-0.3

-0.2

-0.1

0

m
π

 a
π+

π+

MA χ - PT  (One Loop)

 χ - PT  (Tree Level)

CP-PACS (2004)  (nf = 2)

E 865 (2003)

NPLQCD 

NPLQCD a0mπ = −0.04330(42)
ChPT (2-loop) a0mπ = −0.0444(10)

Exp. a0mπ = −0.0454(33)
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S-wave a0 of I = 3/2 Kπ and I = 1 KK in 1/a = 1.6 GeV

with DWF valence on Nf = 2 + 1 imp-staggered sea

’06 ’08 NPLQCD Collaboration

I = 3/2 Kπ I = 1 KK

0.5 1 1.5 2

µπK 
/ fπ

-0.3
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µ πK
  a π+

K
+

χPT  p2

This work
physical line

3 3.5 4

m
K+ / fK+

-0.6

-0.5

-0.4

-0.3

m
K

+
 a

K
+

K
+

χ-PT  (Tree Level)

MILC coarse (b  /= 0)

MILC fine  (b  /= 0)

physical point

extrapolated with  MAχ-PT

a
3/2
0 mπ = −0.0574(44) a10mK = −0.0352(16)

a
1/2
0 mπ = 0.1725(90) through NLO ChPT

Result is roughly consistent with LO ChPT.
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S-wave I = 2 ππ δ(p) in a = 0 with Nf = 2 imp-Wilson

’04 CP-PACS Collaboration
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A(p)

The symbols are the experimental data. ( Hoogland et al., Lostyet al. )

The solid line is parametrized by experimental input. ( Colangelo et al. )

Result is almost consistent with experimental data.
Large error from a→ 0 extrapolation
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S-wave a0 in 1S0 and 3S1 nn ’95 Kuramashi et al.

’06 Beane et al.

’07 Ishii et al.
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Beane et al. (L=2.5 fm)
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0
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1
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3
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Action and β are same in two works, but volume is different.

Lightest mπ of Kuramashi et al. = Heaviest mπ of Ishii et al.

Large finite volume effect?

need detail study of systematic errors

lighter pion mass, larger volume, other systematic error?
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Resonance state

17



Scattering + resonance states

0

1

2 continuous state

threshold 2m

infinite V finite V

resonance

Resonance state with Γ in

infinite volume

→
discrete state in finite vol-

ume

Energy is always real in finite

volume.

→ Γ does not appear in E

Energy shift in finite volume

tan δ0 < 0→∆E > 0

tan δ0 > 0→∆E < 0
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Scattering + resonance states

0

1

2 continuous state

threshold 2m

infinite V finite V

resonance
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δ(
√
s) in infinite volume

from E on finite volume
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Scattering + resonance states ’91 Lüscher; ’94 Göckeler et al.

0

1

2 continuous state

threshold 2m

infinite V finite V

resonance
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s
1/2

0

30

60

90

120

150

180

M
res

δ(s
1/2

)

Breit-Wigner formula

cot δ(Mres) = 0⇒ δ(Mres) = π/2

Γ = tan δ(
√
s)
M2

res − s
Mres

∣

∣

∣

∣

∣√
s=Mres
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Previous works of resonance state

• I = 1 ππ → ρ channel

’84 Gottlieb, Machenzie, Thacker, Weingarten
’89 Loft, DeGrand
’03 McNeile, Michael
’07 CP-PACS Collaboration
’08 Bernard, Meißner, Rusetsky (proposed method)

1. Decay amplitude (mπ/mρ > 0.5)

〈0|ρ(t)ππ(0)|0〉 ∼
[

1 + t〈ρ|ππ〉+O(t2)
]

× e−mρt

2. δ from E → mρ and Γ

3. Discrete probability distribution (πn→∆)

need huge number of data (volume and momentum)

• S = 1 Kn→ Θ+ channel
’03 Csikor, Fodor, Katz, Kovacs ’05 Ishii, Doi, Nemoto, Oka, Suganuma
’04 Sasaki Lassock et al.

’05 Takahashi, Umeda, Onogi, Kunihiro ’06 Alexandrou, Tsapalis
Okiharu, Suganuma, Takahashi Csikor, Fodor, Katz, Kovacs, Toth

· · ·
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P -wave I = 1 ππ δ(p) at mπ = 0.33 GeV with Nf = 2 full QCD

’07 CP-PACS Collaboration

Breit-Wigner form

tan δ(p) =
g2ρππ

6π

p3√
s(m2

ρ − s)
gρππ = 6.25(67)

mρa = 0.851(24)

At physical point

Γ =
g2ρππ

6π

(pph
ρ )3

(mph
ρ )2

= 162(35) MeV

(pph
ρ )2 = ((mph

ρ )2 − 4(mph
π )2)/4

Γexp = 150 MeV
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Bound state
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Scattering + bound states

0

1

2 continuous state

threshold 2m

infinite V finite V

bound state

Continuous state in infinite

volume

→
discrete state in finite vol-

ume

Positive binding energy

∆EB = 2m−MB

Bound state isolated in infi-

nite volume

→
one of discrete states in fi-

nite volume
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Scattering + bound states

0

1

2

threshold 2m

w/o bound state w/ bound state

bound state

Problem

If ∆EB ≈ 0, like dueteron

∆EB = 2 MeV, hard to

identify bound state in finite

volume

Similar energy shift (∆E < 0)

in attractive system

Solutions

1. Volume dependence

∆EB 6= 0 but ∆E0 → 0

in L→∞

2. First excited state energy

E1 ∼ 2m and ∆E1 > 0 but

E1 ∼ 4(m2 + p21)

‘06 Sasaki and TY

25



Scattering + bound states
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Scattering + bound states
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Scattering + bound states

a0 < 0 when one bound state exists.

Levinson’s theorem

δ(0) = nπ (n = # of bound state)

0 50 100 150
p

-90

-45

0

45

90

135

180

w/ bound state a0<0

attractive a0>0

repulsive a0<0

δ(p)

0 50 100 150 200 250
Elab[MeV]

0

30

60

90

120

150

180

3
S1 δ(deg.)
bound

a0=-5.47 fm

Plots from NN-OnLine (http://nn-online.org/)

np 3S1 scattering has negative scattering length.
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Scattering + bound states

0

1

2

threshold 2m

w/o bound state w/ bound state

bound state

Problem

If ∆EB ≈ 0, like dueteron

∆EB = 2 MeV, hard to

identify bound state in finite

volume

Similar energy shift (∆E < 0)

in attractive system

Solutions

1. Volume dependence

∆EB 6= 0 but ∆E0 → 0 in L→∞
’04 Beane et al.

2. First excited state energy

E1 ∼ 2m and ∆E1 > 0 but

E1 ∼ 4(m2 + p21)

‘06 Sasaki and TY

29



Two-particle energy on finite volume ’06 Sasaki and TY

Effective model QED (Abelian-Higgs) with Scalar field |Φx| = 1

Easy to control bound state formation with charge Q of fermion

Large binding energy case ∆EB = 2m−MB ∼ 1.0− 0.76 = 0.24

w/ bound state a0 < 0 w/o bound state a0 > 0

10 15 20 25 30 35 40
L

0.9

1

1.1

1.2

1.3

n=1
E1(no interaction)
2m
n=0 (E0~0.763)

threshold

10 15 20 25 30 35 40
L

0.9

1

1.1

1.2

1.3

n=1
E1(no interaction)
2m
n=0

threshold

Significant difference in first excited state.

⇒ Signal of bound state formation
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Two-particle energy on finite volume ’06 Sasaki and TY

Effective model QED (Abelian-Higgs) with Scalar field |Φx| = 1

Easy to control bound state formation with charge Q of fermion

Small binding energy case ∆EB = 2m−MB ∼ 1.0− 0.99 = 0.01

w/ bound state a0 < 0 w/o bound state a0 > 0
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Significant difference in first excited state.

⇒ Signal of bound state formation

31



More complex scattering states
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Scattering + scattering states (S-wave I = 0 ππ + KK)

0

1

2 continuous state

threshold 2m
1

infinite V finite V

threshold 2m
2

Continuous state in infinite

volume

→
discrete state in finite vol-

ume

2mπ < E < 2mK

E ↔ δ(E)

2mK < E

E ↔ δππ(E), δKK(E), η(E)

’05 He, Feng, Liu
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Scattering + resonance + scattering states
(S-wave I = 0 πΣ + Λ(1405) + Kn)

0

1

2 continuous state

mπ+mΣ

infinite V finite V

m
K

+m
n

resonance

Continuous state in infinite

volume

→
discrete state in finite vol-

ume

mπ +mΣ < E < mK +mn

E ↔ δ(E)

At least we can determine

a0, mΛ(1405), ΓΛ(1405)

mK +mn < E

Too complicated

further study needed
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Summary

Scattering state
a0 : ππ, KK, πK in highest I channel comparing with ChPT
δ0 : ππ in I = 2 with Nf = 2 at a = 0
a0 : nn in 1S0 and 3S1

large systematic uncertainty → detail study needed

Resonance state
δ : P -wave I = 1 ππ → ρ

Breit-Wigner form → mρ and Γ

Bound state
Problem of dueteron ∆ED = 2 MeV
Method to identify bound state formation

Volume dependence and first excited state energy

More complex scattering
S-wave I = 0 πΣ + Λ(1405) + Kn too complicated

At least we could obtain aπΣ0 , δπΣ with present knowledge

Multi-meson scattering state → µK− =
dEnK
dn

∣

∣

∣

V=const.
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Backup Slides
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Two-particle wave function on finite volume
Balog et al., RRD60:094508(1999); CP-PACS, PRD71:094504(2005); Aoki et al.,

PRL99:022001(2007); ....

S-wave wave function in large r region

φp(~r) = 〈0|f(r)f(0)|ff ; p〉 (p2 = E2/4−m2)

∼ sin (pr+ δ(p))

pr
(scattering state)

∼ exp(−γr) (bound state)

4 6 8 10 12 14 16
r

0

0.5

1

1.5

2

bound state

a0>0 scattering p~0

a0<0 scattering p~0

φ
p
(r) Large difference in φp(~r)

bound state ↔ scattering state

scattering state: a0 > 0 ↔ a0 < 0
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Two-particle wave function on finite volume

Effective model

QED (Abelian-Higgs) with Scalar field |Φx| = 1

Easy to control bound state formation with charge Q of fermion

Calculate φp(~r) of lower two states of S-wave ff state, like meson, with

different charge Q = 3,4

4 6 8 10 12 14 16
r

0

0.5

1

1.5

2

bound state

a0>0 scattering p~0

a0<0 scattering p~0

φ
p
(r)

sys. a0 n = 0 n = 1

w/o bound + p ∼ 0 p ∼ 2π/L
w/ bound − bound p ∼ 0
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Wave function φp(~r)/φp(r = 5) (Q = 3,4)

4 6 8 10 12 14 16
|r|

0

1

2

3

4

Q=3 n=0
Q=4 n=0

4 6 8 10 12 14 16
|r|

-2

-1

0

1

2

Q=3 n=1
Q=4 n=1

Different φp(~r) for each state as expected

sys. a0 n = 0 n = 1

w/o bound + p ∼ 0 p ∼ 2π/L
w/ bound − bound p ∼ 0

Consistent with M − 2m = 0.75− 2× 0.5 ≈ −0.25(Q = 4)

Wave function might be a candidate to identify bound state.
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One-dimension L case with periodic boundary condition

Two-pion wave function Φ(r) satisfies periodic boundary condition.
Free case Interacting case
(

∇2 + p20

)

Φ(r) = 0
(

∇2 + p2
)

Φ(r) = Vp(r)Φ(r)

0-L/2 L/2 0-L/2 L/2

Interaction range

p20 = (2π/L)2 · n2, n is integer.
Vp(r) 6= 0 in r < R

p, δ(p), L,p.b.c. → ei2δ(p)+pL = 1

p2 = (2π/L)2·q2, q2 is not integer.

p2 has information of δ(p).
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2.2 Diagonalization method

Problem on lattice (c.m. frame)

pion four-point function

Gnm(t) = 〈0|Ωn(t)Ωm(0)|0〉, Ωi = π(pn)π(−pm)

=
∑

α
VαnV

t
αme

−Eαt, Vαn=〈ππα|Ωn|0〉

→ V0nV
t
0me

−E0t, t→∞

Ωn : two-pion operator (p2n = (2π/L · n)2)
〈ππα| : α-th two-pion state

Four-point function behaves a multiexponential form.

We cannot obtain Eα(α 6= 0) by single exponential fit.
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2.2 Diagonalization method

pion four-point function Gnm(t) ’04 CP-PACS Collaboration

0 5 10 15 20 25 30 35 40 45

t

10
−10

10
−5

10
0

10
5

10
10

10
15

n=0 m=0

n=1 m=1

n=0 m=1

n=1 m=0

β = 2.10 (CM)

source point

p0 = (0,0,0), p1 = (1,0,0)

All Gnm have same slope in t� 1.
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Diagonalization of four-point function matrix
Lüscher and Wolff, Nucl. Phys. B339 222(1990)

pion four-point function matrix

Gnm(t) = 〈0|Ωn(t)Ωm(0)|0〉

M(t, t0)wν = λν(t, t0)wν

λν(t, t0) = exp (−Eν(t− t0))
M(t, t0) = G−1(t0)G(t) with t0 : reference point

We can extract Eν 6=0 from λν(t, t0).

In actual calculation G(t) : N ×N matrix

assumption : N + 1-th state contribution is negligible

Other methods

Anti-periodic boundary condition ’04 Kim

Non-zero total momentum π(p1) −→ ← π(p2) ’95 Rummukainen and Gottlieb

· · ·
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Discrete probability distribution (πn→∆)

’08 Bernard, Meißner, Rusetsky
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No resonance parametrization of infinite volume scattering phase

W (p) : # of state in a fixed p bin

Wfree(p) : # of state in a fixed p bin in free case

m∆ from W (p)−Wfree(p)
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