核内中間子分光実験

	LIGHT UN	FLAVORED		STRAN	GE	CHARMED, S	TRANGE	CC						
	(5 = C =	= B = 0]	C	$(S = \pm 1, C =$	= E = 0]	(C = 5 =	±1]		$I^{\mu}(J^{\mu\nu})$					
	$l^{\mu}(J^{\mu\nu})$		$l^{\mu}(J^{\mu}c)$		l(J ^r)		I(J')	 η:(1S) 	0+(0-+)					
 π[±] 	1 (0)	 π₂(1670) 	$1^{-}(2^{-+})$	 K[±] 	1/2(0)	 D[±]_s 	0(0)	 J/\$\psi(15) 	0-(1)					
 π⁰ 	$1^{-}(0^{-+})$	 \$\phi\$(1680) 	0-(1)	 K⁰ 	$1/2(0^{-})$	 D_x^{*±} 	0(? [?])	• $\chi_{c0}(1P)$	0+(0++)					
• 7	0+(0-+)	 ρ₃(1690) 	1+(3)	• K ⁰ _S	$1/2(0^{-})$	 D[■]_{x0}(2317)[±] 	0(0+)	• $\chi_{c1}(1P)$	$0^{+}(1^{+})$					
 f₀(600) 	$0^{+}(0^{++})$	 ρ(1700) 	1+(1)	 K⁰_L 	$1/2(0^{-})$	 D_{x1}(2460)[±] 	0(1+)	 h_c(1P) 	?:(1+-)					
 p(770) 	1+(1)	$a_2(1700)$	$1^{-}(2^{++})$	K (800)	$1/2(0^+)$	 D_{x1}(2536)[±] 	0(1+)	 χ_{c2}(1P) 	0+(2++)					
• \u03c0 (782)	0-(1)	 f₀(1710) 	$0^{+}(0^{++})$	 K*(892) 	$1/2(1^{-})$	 D_{x2}(2573)[±] 	0(? [?])	 η_t(25) 	0+(0 - +)					
• ¶ [*] (958)	0+(0-+)	η(1760)	0+(0-+)	 K₁(1270) 	$1/2(1^+)$	$D_{x1}(2700)^{\pm}$	0(1-)	• \$\$(25)	0 (1 -)					
 f₀(980) 	$0^+(0^++)$	 π(1800) 	1-(0-+)	 K₁(1400) 	$1/2(1^+)$	DOTT	-	• \$\$(3770)	0(1)					
 a₀(980) 	$1^{-}(0^{++})$	f ₂ (1810)	$0^+(2^+)$	 K*(1410) 	$1/2(1^{-})$	6 - 4	-11	 X(3872) 	0. (5. +)					
• \$\$(1020)	0-(1)	X(1835)	5:(5 - +)	 K^o₀(1430) 	$1/2(0^+)$	() = 4	* in (n=)	$\chi_{=2}(2P)$	$0^+(2^+)$					
 h₁(1170) 	0-(1+-)	 \$\overline\$_3\$(1850) 	0-(3)	 K₂(1430) 	$1/2(2^+)$	• B-	1/2(0)	X(3940)	2.(2.1)					
 b₁(1235) 	$1^+(1^+)$	$\eta_2(1870)$	$0^+(2^{-+})$	K(1460)	$1/2(0^{-})$	• B*	1/2(0)	X(3945)	5.(5)					
 a1(1260) 	$1^{-}(1^{++})$	• $\pi_2(1880)$	1-(2-+)	K ₂ (1580)	$1/2(2^{-})$	 B[±]/B⁰ ADM 	IXTURE	• \$\$(4040)	0 (1)					
 f₂(1270) 	$0^+(2^+)$	p(1900)	$1^+(1^-)$	K(1630)	$1/2(?^{?})$	 B²/B³/B³/B³/B³/B³/B³/B³/B³	b-baryon E	• \$\$(4160)	0 (1)					
 f₁(1285) 	$0^{+}(1^{+})$	f ₂ (1910)	$0^+(2^+)$	K1(1650)	$1/2(1^+)$	Va and Vat	CKM Ma-	 X(4260) 	? (1)					
 η(1295) 	0+(0++)	 6(1950) 	$0^+(2^+)$	 K*(1680) 	$1/2(1^{-})$	trix Elements	i	X(4360)	? (1)					
 π(1300) 	1 (0 ')	P ₃ (1990)	1+(3)	 K₂(1770) 	$1/2(2^{-})$	• B*	$1/2(1^{-})$	• \$\$(4415)	0 (1)					
 a₂(1320) 	$1^{-}(2^{++})$	 6(2010) 	$0^+(2^++)$	 K₃(1780) 	1/2(3)	B [•] _J (5732)	2(21)	ĥ	b.					
 r₀(1370) 	$0^{+}(0^{+})$	f ₀ (2020)	$0^{+}(0^{+}+)$	 K₂(1820) 	$1/2(2^{-})$	 B₁(5721)⁰ 	$1/2(1^+)$	n (15)	0+10-+1					
n ₁ (1380)	2 (1 *)	• a ₄ (2040)	1 (4 + +)	K(1830)	$1/2(0^{-})$	 B^a₂(5747)⁰ 	$1/2(2^+)$	75(15)	0-(0-1)					
• $\pi_1(1400)$	$1(1^{-1})$	 É₁(2050) 	0 (4 ' ')	K ₀ (1950)	$1/2(0^+)$	POTTOM S	TRANCE	• I (15)	$0^{+}(0^{+}^{+})$					
• n (1405)	0 (0)	$\pi_2(2100)$	1 (2 +)	$K_{2}^{\bullet}(1980)$	$1/2(2^+)$	(B = ±1, 5	= ∓ 1]	• X to (1P)	$0^{+}(3^{+} + 1)$					
 r₁(1420) 	0-(1)	f ₀ (2100)	0+(0++)	 K[*]₄(2045) 	$1/2(4^+)$	- <i>P</i> ⁰	0(0-7)	• X == (1P)	$0^{+}(2^{+}^{+})$					
• $\omega(1420)$	0 (1)	F2(2150)	a+(a = -)	K ₂ (2250)	$1/2(2^{-})$	- D ₃	0(0)	• T(25)	0-(1)					
r2(1430)	1 = (0 + +)	ρ(2150) φ(2170)	0-(1)	K ₃ (2320)	$1/2(3^+)$	• D ₂	0(1)	7(10)	0-(2)					
 a₀(1450) a(1450) 	1+(1)	\$(2000)	0 (1)	K ₅ (2380)	$1/2(5^{-})$	• B _{s1} (5830)*	1/2(11)	• Vo(2P)	0+(0++)					
• p(1430)	a + (a - +)	E(2200)	0+(0++)	K4(2500)	$1/2(4^{-})$	• B _{x2} (5840)*	1/2(2.)	• XH (2P)	$0^{+}(1^{+}+1)$					
• n (1475)	$0^{+}(0^{+}+1)$	$f_{j}(2220)$	0+(0-+)	* K (3100)	??(???)	B, (5850)	£(£.)	• X (2P)	$0^{+}(2^{+}+1)$					
 I0[1500] 6.(1510) 	$a^{+}(a^{+} + 1)$	n (2250)	++/2	CUADA	ic D	BOTTOM, C	HARMED	• T(35)	0-(1)					
• (1525)	0+(2++)	• 6.(23.00)	0+12++1	CHARM	ED	(B = C =	±1)	 T(45) 	0-(1)					
£ (1565)	$0^{+}(2^{+}+1)$	£(22.00)	$0^{+}(4^{+}+1)$	\L = 4	n in (n=1)	 B[±]. 	0(0-)	 T(10860) 	0-(1)					
d (1520)	1+(1)	6(2330)	$0^{+}(0^{+}^{+})$	• D-	1/2(0)	-	. ,	 T(11020) 	0-(1)					
p (1505)	a = (a + -)	6(23.40)	0+12++1	• D*	1/2(0)			. (- (-)					
n1(1595)	1-(1-+)	• (2350)	1+151	• D*(2007)*	1/2(1)			NON-gg CA	NDIDATES					
a (1640)	1-(1++)	a. (2450)	1-16++1	• D*(2010)*	1/2(1)			NON-gg C	ANDI-					
6(1640)	$a^{+}(2^{+}+1)$	6(2510)	0+16++1	D ₀ (2400) ⁵	1/2(0+)			DATES						
n2(1645)	$0^{+}(2^{-}+1)$	10[23 IU]	0 (0)	D ₀ (2400) [±]	1/2(0+)									
 12(1045) 14(1650) 	0-(11	OTHER	LIGHT	 D₁(2420)⁰ 	$1/2(1^{+})$									
• m (1670)	0-(3)	Further St.	ates	D1(2420)±	$1/2(?^{*})$									
- ag(1010)	- (-)			$D_1(2430)^0$	$1/2(1^+)$									
				 D₂(2460)³ 	$1/2(2^{+})$									
				 D₂(2460)[±] 	$1/2(2^+)$									
				D*(2640)*	$1/2(?^{t})$									

	LIGHT UN (S = C :	FLAVORED = B = 0]		STRA (S = ±1, C	NGE = B = 0)	CHARMED, S (C = S =	TRANGE ±1]	c	\overline{c} $I^{\vec{n}}(J^{PC})$
	$I^{G}(J^{PC})$		$I^{G}(J^{PC})$		$I(J^p)$		I(f)	 η:(15) 	0+(0-+)
•π [±]	1 (0)	 π₂(1670) 	$1^{-}(2^{-+})$	• K [±]	1/2(0)	 D[±]_x 	0(0)	 J/\$\psi(1S) 	0-(1)
 π⁰ 	$1^{-}(0^{-+})$	 \$\phi\$(1680) 	0-(1)	 K⁰ 	$1/2(0^{-})$	 D_x^{*±} 	0(? [?])	• $\chi_{c0}(1P)$	0+(0++)
• 7	0+(0-+)	 	1+(3)	• K ⁰ _S	1/2(0-)	 D[*]_{s0}(2317)[±] 	0(0+)	• $\chi_{c1}(1P)$	$0^{+}(1^{+})$
 f₀(600) 	$0^{+}(0^{++})$	 ρ(1700) 	1+(1)	 K⁰₁ 	1/2(0-)	 D_{s1}(2460)[±] 	0(1+)	 h_c(1P) 	?!(1+-)
 p(770) 	1+(1)	$a_2(1700)$	$1^{-}(2^{++})$	K ₀ (800)	$1/2(0^+)$	 D_{s1}(2536)[±] 	0(1+)	 χ_{c2}(1P) 	$0^{+}(2^{+})$
 ω(782) 	0-(1)	 f₀(1710) 	$0^{+}(0^{+}+)$	 K*(892) 	$1/2(1^{-})$	 D_{x2}(2573)[±] 	0(??)	 η:(25) 	$0^{+}(0^{-+})$
 η^r(958) 	$0^{+}(0^{-+})$	η(1760)	$0^{+}(0^{-+})$	 K₁(1270) 	$1/2(1^+)$	$D_{s1}(2700)^{\pm}$	0(1-)	 \$\$\psi(25)\$ 	0-(1)
 f₀(980) 	$0^{+}(0^{++})$	 π(1800) 	$1^{-}(0^{-+})$	 K₁(1400) 	$1/2(1^+)$			 \$\$\phi\$(3770) 	0-(1)
 a₀(980) 	$1^{-}(0^{++})$	$f_2(1810)$	$0^{+}(2^{++})$	 K*(1410) 	1/2(1-)	BOTTO	M	 X(3872) 	0 ² (? ²⁺)

S — σ: CB, TAPS, CHAOS PS — π: PSI, GSI K: E471,549,570 η: COSY, CB V — ρ, ω, Φ: TAGX, E325, CLAS, TAPS

Mastol	* (*	10(2330) 0 (0)	• D [.]	1/2(0)	1 1 1 1 1 1 1 1 1 1
h ₁ (1595)	0-(1+-)	 6(2340) 0⁺(2⁺⁺) 	 D*(2007)⁰ 	1/2(1-)	NON-47 CANDIDATES
 π₁(1600) 	$1^{-}(1^{-+})$	ρ ₅ (2350) 1 ⁺ (5)	 D*(2010)[±] 	$1/2(1^{-})$	Non-99 CANDIDATED
$a_1(1640)$	$1^{-}(1^{++})$	$a_6(2450) = 1^{-}(6^{++})$	$D_{0}^{*}(2400)^{0}$	$1/2(0^+)$	NON-gg CANDI- DATES
$f_2(1640)$	$0^{+}(2^{++})$	£(2510) 0 ⁺ (6 ⁺⁺)	$D_0^{\bullet}(2400)^{\pm}$	$1/2(0^+)$	DALES
 η₂(1645) 	$0^{+}(2^{-+})$	OT HED LICHT	 D₁(2420)⁰ 	$1/2(1^+)$	
 ω(1650) 	0-(1)	OTHER LIGHT	D,(2420)*	1/2(??)	
 ω₃(1670) 	0-(3)	Further States	D1(2430)0	$1/2(1^+)$	
			 D*(2460)⁰ 	$1/2(2^+)$	
			 D*(2460)[±] 	$1/2(2^+)$	
			$D^{\bullet}(264.0)^{\pm}$	1/2(7?)	
			2 (2010)	a) a (c.)	

Hadron properties in the nuclear medium. Ryugo S. Hayano, Tetsuo Hatsuda (Tokyo U.) . Dec 2008. 40pp. Submitted to Rev.Mod.Phys. e-Print: arXiv:0812.1702 [nucl-ex]

2007 野海研究会「J-PARC ハドロン実験施設の ビームライン整備拡充に向けて」

Chiral Restoration of Hadrons in Nuclear Medium

電子対測定実験(E16)と高運動量ビームライン	理研	四日市悟
J-PARCにおけるΦ中間子原子核探索実験	理研	大西宏明
π -p \rightarrow ω n反応を用いた ω 束縛系と質量の		
同時測定実験の提案	東京大理	小沢恭一郎
Rough Idea of $K^++A \rightarrow K^*+X$ Experiments	東北大理	金田雅司
In Medium N*(1535) Spectroscopy	理研	板橋健太
K1.1での実験計画	理研	應田治彦

	LIGHT UNF (S = C =	FLAVORED = B = 0]		STRA ($S = \pm 1$, C	NGE = B = 0)	CHARMED, S (C = S =	TRANGE ±1]	C	\overline{c} $I^{G}(J^{PC})$
	$I^{G}(J^{PC})$		$I^{G}(J^{PC})$		$I(J^{p})$		I(f)	• η:(15)	$0^{+}(0^{-+})$
•π [±]	1 (0)	 π₂(1670) 	$1^{-}(2^{-+})$	• K [±]	1/2(0)	 D[±]_x 	0(0)	 J/\$\psi(15) 	0-(1)
 π⁰ 	$1^{-}(0^{-+})$	 \$\overline\$(1680)\$ 	0-(1)	 K⁰ 	$1/2(0^{-})$	 D_x^{*±} 	0(??)	• $\chi_{c0}(1P)$	0+(0++)
• 7	0+(0-+)	 <i>ρ</i>₃(1690) 	1+(3)	• K ⁰ _S	1/2(0-)	 D[*]_{s0}(2317)[±] 	0(0+)	• $\chi_{c1}(1P)$	$0^{+}(1^{+})$
 f₀(600) 	$0^{+}(0^{++})$	 ρ(1700) 	1+(1)	 K⁰₁ 	$1/2(0^{-})$	 D_{s1}(2460)[±] 	0(1+)	 h_c(1P) 	?!(1+-)
 p(770) 	1+(1)	$a_2(1700)$	$1^{-}(2^{++})$	K ₀ (800)	$1/2(0^+)$	 D_{s1}(2536)[±] 	0(1+)	 χ_{c2}(1P) 	$0^{+}(2^{+})$
 ω(782) 	0-(1)	 6(1710) 	$0^{+}(0^{+}+)$	 K*(892) 	$1/2(1^{-})$	 D_{x2}(2573)[±] 	0(??)	 η:(25) 	$0^{+}(0^{-+})$
 η'(958) 	0+(0-+)	η(1760)	$0^{+}(0^{-+})$	 K₁(1270) 	$1/2(1^+)$	$D_{s1}(2700)^{\pm}$	0(1-)	 \$\$\psi(2.5)\$ 	0-(1)
 f₀(980) 	$0^{+}(0^{++})$	 π(1800) 	$1^{-}(0^{-+})$	 K₁(1400) 	$1/2(1^+)$			 \$\$\phi\$(3770) 	0-(1)
 a₀(980) 	$1^{-}(0^{++})$	f ₂ (1810)	0+(2++)	 K*(1410) 	1/2(1-)	BOTTO	MC	 X(3872) 	0 ² (? ²⁺)

S — σ: CB, TAPS, CHAOS PS — π: PSI, GSI K: E471,549,570 η: COSY, CB V — ρ, ω, Φ:TAGX, E325, CLAS, TAPS

p(1570)	1+(1)	f ₀ (2330)	0+(0++)	 D⁰ 	1/2(0-)	• T(11020) 0-(1)
h ₁ (1595)	0-(1+-)	 f₂(2340) 	$0^{+}(2^{++})$	 D*(2007)⁰ 	$1/2(1^{-})$	NON-gg CANDIDATES
• $\pi_1(1600)$	$1^{-}(1^{-+})$	P ₅ (2350)	1+(5)	 D*(2010)[±] 	$1/2(1^{-})$	
a1(1640)	$1^{-}(1^{++})$	$a_6(2450)$	$1^{-}(6^{++})$	$D_0^{\bullet}(2400)^0$	$1/2(0^+)$	DATES
$f_2(1640)$	$0^{+}(2^{++})$	£(2510)	$0^{+}(6^{++})$	$D_0^{\bullet}(2400)^{\pm}$	$1/2(0^+)$	10-11-11-1
 η₂(1645) 	$0^{+}(2^{-+})$	OTHER	LICHT	 D₁(2420)⁰ 	$1/2(1^+)$	
 ω(1650) 	$0^{-}(1^{-})$	VINER	LIGPH	D.(2420)±	1/2/7?1	
 ma (1670) 	0 - (3)	Further Sta	ates	D1(2420)	-)-(-)	
	- (-)			$D_1(2430)^3$	$1/2(1^{+})$	
				 D₂(2460)⁰ 	$1/2(2^+)$	
				 D[●]₂(2460)[±] 	$1/2(2^+)$	
				$D^{\bullet}(2640)^{\pm}$	$1/2(?^{?})$	
1						

動機

・中間子―原子核相互作用 ・カイラル対称性の破れに伴うハドロ ン質量獲得のシナリオを裏付ける

Hadron properties in the nuclear medium. Ryugo S. Hayano, Tetsuo Hatsuda (Tokyo U.) . Dec 2008. 40pp. Submitted to Rev.Mod.Phys. e-Print: arXiv:0812.1702 [nucl-ex]

π-nucleus 相互作用

Experimental Principle

new method to populate deep π

Nuclear reaction to directly Populate pionic bound states.

 $A(n,p)A+\pi^{-}$ reaction

d

³He

Pionic lead atom

Measured Excitation Spectrum of 206Pb(d, 3He)

Pionic lead atom

Measured Excitation Spectrum of 206Pb(d, 3He) Hydrogen contamination in target 20 π production threshold $(2p)_{\pi}$ Quasi-free π continuum $d^{2}\sigma/(dE d\Omega) [\mu b/(MeV sr)]$ 15 3p,3d,4p. (1s)_π 10 5 ר ער<u>ויייייייטטעראט</u>רער איייייער

125 130 135 140 145 Excitation Energy [MeV] Nearly constant background w/o π production RIKEN Nishina Center, Kenta Itahashi

Pionic lead atom

Comparison between theoretical prediction and experimental result

Comparison between theoretical prediction and experimental result

π-nucleus 相互作用

Isovector part measurement

Target:

15 mg/cm² Sn 116, 120, 124 with thin polyethylen layer attached.

Beam:

 $T_d = 250 \text{ MeV/u}$ to enhance $(1s)_{\pi} \times (s_{1/2})_n$

Strong interaction optical potential $U_{opt} = \bigvee_{s-wave} + \bigvee_{p-wave}$ $\int_{s-wave} = b_0 \rho(r) + b_1 \Delta \rho(r) + B_0 \rho^2(r)$ $\rho(r) = \rho_n(r) + \rho_p(r) = nuclear density$ $\Delta \rho(r) = \rho_n(r) - \rho_p(r)$ $b_0 \text{ isoscalar part parameter}$ $b_1 \text{ isovector part parameter}$

Isovector part measurement

Target:

15 mg/cm² Sn 116, 120, 124 with thin polyethylen layer attached.

Beam:

 $T_d = 250 \text{ MeV/u}$ to enhance $(1s)_{\pi} \times (s_{1/2})_n$

 $BE(^{115}Sn) = 3906 \pm 21(stat) \pm 12(sys) \text{ keV}$ $BE(^{119}Sn) = 3820 \pm 13(stat) \pm 12(sys) \text{ keV}$ $BE(^{124}Sn) = 3744 \pm 13(stat) \pm 12(sys) \text{ keV}$ $\Gamma(^{115}Sn) = 441 \pm 68(stat) \pm 54(sys) \text{ keV}$ $\Gamma(^{119}Sn) = 326 \pm 47(stat) \pm 65(sys) \text{ keV}$ $\Gamma(^{124}Sn) = 341 \pm 36(stat) \pm 63(sys) \text{ keV}$

Suzuki et al. PRL92 (04)072302

FIG. 2. Measured x-ray lines: (a) Pionic hydrogen line. (b) With the pionic beryllium line, the instrumental resolution function was measured. (c) The electronic argon $K\alpha$ line was used as a wavelength standard. (d) The energy calibration was cross checked with the zinc $K\alpha$, line measured in third order

150

Pionic hydrogen and deuterium at PSI

Suzuki et al. PRL92 (04)072302

Isovector parameter b₁ and Chiral symmetry

<qq> : order parameter of
 chiral symmetry

Isovector parameter b1 and Chiral symmetry

Density-dependent isovector term. We take the following form according to Weise [4]:

DD:
$$b_1(r)\Delta\rho(r) = \frac{b_1^{\text{free}}}{1 - \alpha\rho(r)}\Delta\rho(r).$$
 (10)

Yamazaki and Hirenzaki, PLB557(03)20 [4] = Weise, Acta. Phys. Polon. B31 (00) 2715

$$R = b_1^{\text{free}} / b_1 = 0.78 \pm 0.05 \tag{3}$$

$$\approx b_1^{\text{free}}/b_1^*(\rho_e) \approx f_\pi^*(\rho_e)^2/f_\pi^2 \approx 1 - \alpha \rho_e,$$
 (4)

where we used the fact [27,28] that the solution with a local-density-dependent parameter, $b_1^*(\rho) = \frac{b_1^{\text{free}}}{1 - \alpha\rho(r)}$], is equivalent to that using a corresponding constant parameter $b_1 = \frac{b_1^{\text{free}}}{1 - \alpha\rho_e}$ with an effective density $\rho_e \approx 0.6\rho_0$.

Suzuki et al. PRL92 (04)072302

Isovector parameter b1 and Chiral symmetry

Isovector parameter b1 and Chiral symmetry

Suzuki et al. PRL92 (04)072302

Systematic errors due to matter radii ambiguities of nuclei.

EXPERIMENTAL PROPOSAL FOR RI BEAM FACTORY

Spectroscopy of Pionic Atom in $^{122}Sn(d, {}^{3}He)$ Nuclear Reaction

(January 2008)

K. Itahashi¹, M. Iwasaki, H. Ohnishi, S. Okada, H. Outa, T. Suzuki, M. Wakasugi, T. Yamazaki, Y. Yano, Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, 351-0198 Saitama, Japan H. Geissel, C. Nociforo, H. Weick, Gesellschaft für Schwerionenforschung mbH, D-64291 Darmstadt, Germany R.S. Hayano, S. Itoh, N. Ono, H. Tatsuno, Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033 Tokyo, Japan S. Hirenzaki, R. Kimura, J. Yamagata, Department of Physics, Nara Women's University, Kita-Uoya Nishi-Machi, 630-8506 Nara, Japan P. Kienle, K. Suzuki, Stefan Meyer Institut für subatomare Physik, Boltzmangasse 3, 1090 Vienna, Austria K. Lindberg, P.-E. Tegnér, I. Zartova, Department of Physics, Stockholm University, AlbaNova University Centre, SE-10691 Stockholm, Sweden and M. Sato Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, 152-8551 Tokyo, Japan

	EC	EC	EC	EC	EC	ECEC 0.10	* EC	0.09	* EC	1.91	
	I118	I119	I120	I121	I122	I123	I124	I125	I126	I127	
	13.7 m 2-	19.1 m 5/2+	81.0 m 2-	2.12 h 5/2+	3.63 m 1+	13.27 h 5/2+	4.1760 d 2-	59.408 d 5/2+	13.11 d 2-	5/2+	
	* EC	EC	* EC	EC	* EC	EC	EC	EC	EC.B:	100	FC(
_	Te117	Te118	Te119	Te120	Te121	Te122	Te123	Te124	Te125	Te126	
	62 m	6.00 d	16.03 h	0.	16.78 d		1E+13 y	0.	1/2.	0.	
	1/2+	0+	1/2+	0+	1/2+	0+	EC 1/2+ *	0+	1/2+ *	0+	
_	EC	EC	EC	0.096	EC	2.603	0.908	4.816	7.139	18.95	3-
	Sb116	Sb117 2.80 h	Sb118	Sb119 38 19 h	Sb120	Sb121	Sb122	Sb123	Sb124	Sb125	
	3+	5/2+	1+	5/2+	1+	5/2+	2- 2-	7/2+	3-	7/2+	
	* EC	EC	* EC	* EC	* EC	57 36	™ EC.β-	42 64	₹- }-	ß-	3-
	Sn115	Sn116	Sn117	Sn118	Sn119	Sn120	Sn121	Sn122	Sn123	Sn124	
	1/2+	0+	1/2+	0+	1/2+	0+	27.06 h 3/2+	0+	129.2 d 11/2-	0+	
			*		*		*		*		0
	0.34	14.53	7.68	24.23	8.59	32.59	p-	4.63	p-	5.79	3-
	In114 71.9 s	In115 4.41E+14 v	In116 14.10 s	In117 43.2 m	1n118 5.0 s	In119 2.4 m	1n120 3.08 s	In 121 23.1 s	1n122 1.5 s	In 123 5.98 s	
	1+	9/2+	1+	9/2+	1+	9/2+	1+	9/2+	1+	9/2+	
	EC,β-	β- 95.7	EC,β·	β-	β-	β-	β-	β-	β-	β-	3-
	Cd113	Cd114	Cd115	Cd116	Cd117	Cd118	Cd119	Cd120	Cd121	Cd122	(
	7.7E+15 v		53.46 h		2.49 h	50.3 m	2.69 m	50.80 s	13.5 s	5.24 s	

- Confirmation of prev. results with much high precision.
- ¹²²Sn serves starting point for isotone chain measurement.

0.09

I125

59.408 d

5/2+

EC

I126

13.11 d

1.91

I127

5/2+

EC

I126

13.11 d

C.B

1.91

I127

5/2+

100

0.09

I125

59.408 d

5/2+

- First data for ¹²²Sn Is a=dsmall matter radii influence
- Confirmation of prev. results with much high precision.
- ¹²²Sn serves starting point for

isotone chain measurement.

EC

I126

13.11 d

C.B

1.91

I127

5/2+

100

0.09

I125

59.408 d

5/2+

- First data for ¹²²Sn Is a≖dsmall matter radii influence
- Confirmation of prev. results with much high precision.
- ¹²²Sn serves starting point for

isotone chain measurement.

RI Beam Factory

NISHINA C E N T E R

Pionic Atom Factory Project at the RIBF

(これまでの100倍のビーム強度)

Pionic Atom Factory Project at the RIBF

(これまでの100倍のビーム強度)

RIKEN Nishina Center, Kenta Itahashi

Yamagata

Our first goals

Our first goals

Our first goals

ただ、実験的には楽な事ばかりではない...

強度が I0 倍 ○ 運動量広がりが I0 倍 × 入射エネルギーの不定性が大きい × ビームのエミッタンスが大きい ×

泥臭い仕事が沢山

EBM での水平方向ビームサイズと分解能

入射エネルギーと較正誤差

テスト実験(2009/5)

Beam Time schedule 2009年5月

2009/2/18

																							N	lay	/ 5	5月														
Proposal Numb	69	Experiment Leader	Course	Particle	Energy (NeV/10)	Intensity	Time Franc (days)	stert- time	end- tsime	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30 () 1
AVF 単独	L									*	±	Ħ	я	火	*	乖	金	±	B	見	灾	永	赤	ŵ	2	F	Я	×	×	寨	*	*	B	月	sk.	瘱	寨	金	±	8
NPOBO2 AVF46	-01	Wei-ping Liu	CRIB	^{nò} B	8.5	500pnA	4	5/19 9:00	5/23 9:00																			9				<u>330</u>								
ML0702 AVF07	-07	篠原厚	E7b	12C	7.3	TÖÖöpnA	1	5/25 21:00	5/26 21:00															7				2000					2	(:00	2	312 00 1				
AVF+RRC											<u>,</u>		00000														0000									<u>,</u>				
ML0707 RRC13	-03	久保山智司	E3A	Kr	70	1 674	1.5	5/16 21:00	5/18 9:00			1009											1997		200		190 5 100													
180702 RR631	-27	阿部知子	E58	¹² C	135	1 pnA	5hr	5/27 10:00	5/27 15:00																	1007									1050	α Π				Π
MLOTO2 RRC02	-25	泉雅子	E58	¹² C	135	1 proA	6hr	5/27 15:00	5/27 21:00																												1500			Î
NF0802 RRC49	-02	小沢顕	RIPS	180	100	100 pnA	3. 5	5/28 21:00	6/1 9:00															7													3,000.			
					c																																	691	92007	17C
										1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
RIBF										金	<u>±</u>	8	<u>,</u>	Å	恚	痜	金	<u>1</u>	B	月	ġ,	藏	赤	金	£		A	×	*	溙	*	<u></u>	8	亰	Å	杰	家	*	£	
NPO702 RIBF27	-02	板橋健太	BigBlPS	¹⁴ N	250	50 pnA.	3	4/27	5/11																															
MSO9	-01	小林俊雄	BigRIPS	¹⁴ N	>200	1 MHz	1	4/27	5/11																															
MSO9	-02	上坂友洋	SHARAD	¹⁴ N	250	10-250 pnA	7	4/27	5/11																															
1				·		t			調審	須田 久保木									Juli	10000	ス山		والترتيب					日湯	6	0000	2002		لانتعاد		* .8					

カイラル対称性の破れ

= 質量の起源に迫る研究

* Morimatsu, Yazaki NPA435(85)727 NPA483(88)493

Letter of Intent for J-PARC

Spectroscopy of η mesic nuclei by (π^-, n) reaction at recoilless kinematics

K. Itahashi^{a1}, H. Fujioka^{b2}, S. Hirenzaki^c, D. Jido^d, and H. Nagahiro^e.

(π^+,p) at 740 MeV/c

おそらく、decay mode と タギングが鍵

議論とTodoと理論への要望(?)

η中間子原子核

- 崩壊モードをタグした時のBK評価
- (π⁻,n) @ q = 0 と (π⁺,p) @ q>0 の比較
- 出来たら、parasite で少しデータを取りたい...

π中間子原子

b_l(ρ) を決めるには何を計測すれば良い?
 = 束縛エネルギー以外の計測値の取り扱い
 π二個入り?

中間子束縛系の研究

強い相互作用 カイラル対称性=物質質量の起源

強い相互作用 カイラル対称性=物質質量の起源

束縛状態=量子力学的に決定=不定性が小さい

強い相互作用 カイラル対称性=物質質量の起源

束縛状態=量子力学的に決定=不定性が小さい

高精度の実験

Toki et al., NPA501(89)653.

