$$
\begin{gathered}
11(1405) \\
\text { クォーク(3+5)体系としての } \\
\wedge(1405)
\end{gathered}
$$

日本社会事業大学 竹内 幸子
上智大学
清水 清孝

Pentaquarks ($q^{4} \bar{q}$)

- $\Theta^{+}, ~ \Xi, \cdots$
${ }^{\bullet}$ negative-parity $\wedge^{*} \rightarrow$ This talk
S.T. and K.Shimizu, P.R. C76, 035204(07)
$(q \bar{q})^{2}$ Mesonss.T. and K.Shimizu, arXiv:0812.2526
- X(3872)
- D ${ }_{\text {sio }}^{*}(2317)^{ \pm}, D_{\text {sil }}^{*}(2460)^{ \pm}$
- $\mathrm{fo}_{\mathrm{o}}(600) \mathrm{fo}_{0}(980) \mathrm{ao}(980) \kappa(800)$?

Adding $(q \bar{q})$ is important because of the parity
Ref. Particle Data Group

$\left(q^{4} \bar{q}\right)(0 s)^{5}$ v.s. $q^{3}(0 s)^{2} O p \quad ?$

Negative parity Baryons' mass from quark models

- $q^{3} \sim 1600 \mathrm{MeV}$

- $q^{3}+q \bar{q}(940+500 \sim 600) \mathrm{MeV}+\mathrm{K}+\mathrm{V}$

$$
\begin{aligned}
& \mathrm{K}<3 / 2 \hbar \omega_{\mathrm{q}} \\
& \mathrm{~V}<0
\end{aligned}
$$

$$
q^{3}+q \bar{q} \text { for } \wedge(1405) ? ?
$$

$\left(q^{4} \bar{q}\right)(0 s)^{5}$ V.s. $q^{3}(0 s)^{2} 0 p \quad ?$

Flavor-singlet P-wave q^{3} state?

- Observed $\Lambda_{8-} \Lambda_{1}$ splitting
- Observed large LS splitting
-These two facts are difficult to reproduce...
S-wave $q^{4} \bar{q}$ state?
- CMI $(\lambda \cdot \lambda)(\sigma \cdot \sigma)$ can be strongly
attractive in some states of $T=0 J^{P}=1 / 2^{-}$
- but also in $\mathrm{T}=1 \mathrm{1} / 2^{-} \cdots \cdots$ Light \sum^{*} ? Hogaasen Sorba NPB145(78)119

$\Lambda(1405)$ is a resonance!

Treating $\wedge(1405)$ as a resonance in the $\mathrm{B}-\mathrm{M}$ scattering is absolutely necessary.

- Chiral unitary model
- \wedge (1405) appears as a resonance in the BM scattering. Oset Ramos NPA635(98)99
- Self energy of meson field
- Mass of the q^{3} state reduces ... 1 . considerably.
Arima Matsui Shimizu PRC49(94)2831

$\Lambda(1405)$ is a resonance!

How to extract signals from the continuum? (in the quark models)

- solved models
- change model space

- complex scaling method $\sim^{\frac{E}{x}}$
- configuration-restricted models
- quark cluster model

Oka Yazaki

$\Lambda(1405)$ is a resonance!

How to extract signals from the continuum? (in the quark models)
solved models

- change model space

- complex scaling method \sim°
- configuration-restricted models
- quark cluster model

Oka Yazaki

Channel dep of $\mathrm{V}_{\text {вм }}(\mathrm{T}=0)$

Short range part of $V_{\text {вм }}$ by the

	$\Sigma \pi$	NK	$\wedge n$	三K	
$\Sigma \pi$	$\frac{-16}{3}$	$\frac{116 \sqrt{7}}{21}$	$\frac{16 \sqrt{105}}{105}$	0	
$N \bar{K}$		0	$\frac{28 \sqrt{ } 15}{15}$	0	
$\wedge n$			$\frac{112}{15}$	$\frac{-40 \sqrt{ } 70}{21}$	
三K				$\frac{-160}{21}$	Matrix elements， $-\langle\lambda . \lambda \sigma . \sigma\rangle$

No peak is found for $q^{4} \bar{q}!!$

- Reduced mass of $\Sigma \pi$ is small \rightarrow Kinetic term is large \rightarrow Short range attraction is suppressed. No attraction in the N \bar{K} channel.

With q^{3}-pole \cdots

$\Lambda(1405)=\alpha\left|q^{3}\right\rangle+\beta\left|q^{3}-q \bar{q}\right\rangle$

Transition potential is:

$\left\langle q^{3}\right| V\left|q^{3}-q \bar{q}\right\rangle=\left|\wedge_{1} q^{3}(o s)^{2} o p\right\rangle\left\langle B M q^{4} \bar{q}(0 s)^{5}\right|$

$q^{3}-q \bar{q}$ scattering with q^{3}－pole

q^{3}－pole at $\Sigma \pi+160 \mathrm{MeV}(\sim 1490 \mathrm{MeV})$

 gives a resonance at $\sim 1405 \mathrm{MeV}$ ！Takeuchi Shimizu PRC76（2007）035204

$$
\Sigma \pi+N K
$$

$\Sigma \pi+N K-b a r$ Scattering（L＝0）

$\Sigma \pi+N K+$ pole δ（Rad）arb．unit

二0ге $\angle \mathrm{OU} 9$＠熱海

Scattering Observables

mixing of $\Sigma \pi$ and NK is strong at the threshold.

NK scattering length :
$-0.75+i 0.38 \mathrm{fm}$

Exp. $(-1.70 \pm 0.07)+i(0.68 \pm 0.04)$ Martin NPB179(81)33

Quark model v.s. Chiral unitary model

Takeuchi Shimizu arXiv:0812.2526

Quark model can reproduce the peak, but so does the chiral unitary model.

Quark model:

- quarks, no attraction between NKbar, nonrelativistic, q^{3} pole

Chiral Unitary model:

- no internal structure, large attraction between NKbar, semi-relativistic, no q^{3} pole

Simplified model

To understand the situation, we perform simplified baryon meson scattering problems such as

- scattering of baryon and meson without internal structure.
semi-relativistic kinematics
interaction is F.F like or $\lambda \lambda \sigma \sigma$-like and separable.
a ' q 3-pole' may couple to the continuum.

Channel dep of $\mathrm{V}_{\text {вм }}(\mathrm{T}=0)$

Short range part of $V_{B M}$
－Difference is found in the NK diagonal part．
$-\langle\lambda . \lambda \sigma . \sigma\rangle$
－No NK diagonal attraction ：need something to make a peak just below the $N \bar{K}$ threshold．
〈F．F〉
－NK diagonal attraction makes a peak just below the $N \bar{K}$ threshold．

Channel dep of $\mathrm{V}_{\text {вм }}(\mathrm{T}=0)$

Short range part of $V_{B M}$

- Difference is found in the NK diagonal part.

Simplified model - int

- separable int with gaussian cut-off
- strength is the same as Oset-Ramos.
- two types of channel dependence:
$-\langle\lambda . \lambda \sigma . \sigma\rangle \quad\langle F . F\rangle$

	$\sum \pi$	NK	$\wedge n$		$\Sigma \pi$	NK	$\wedge n$
$\Sigma \pi$	-5.33	14.61	1.56	$\Sigma \pi$	-8	2.45	0
NK		0	7.23	NK		-6	4.24
$\wedge n$	Short range attraction does not affects much because pion cannot stay close.						

Simplified－strong FF

Chiral－Unitary－like

－semi－rela，〈F．F〉，no pole，energy－dep

NK scattering length
$=-2.09+0.59 i$
（c．f．$-2.53+1.26$ i
for Oset Ramos original）

$$
\begin{aligned}
& \text { Exp. }(-1.70 \pm 0.07) \\
& +i(0.68 \pm 0.04)
\end{aligned}
$$

Simplified－strong FF

Chiral－Unitary－like

－semi－rela，〈F．F〉，no pole，energy－dep

NK scattering length
$=-2.09+0.59 i$
（c．f．$-2.53+1.26$ i
for Oset Ramos original）

$$
\begin{aligned}
& \text { Exp. }(-1.70 \pm 0.07) \\
& +i(0.68 \pm 0.04)
\end{aligned}
$$

Simplified - strong FF

Chiral-Unitary-like

- semi-rela, $\left\langle\right.$ F.F. wassspenum $^{\text {no }}$ pole, energy-indep

Simplified model $-q^{3}$ pole

Flavor singlet transition for FF model

$$
\left|\mathbf{1}_{B M}\right\rangle=\sqrt{\frac{3}{8}}|\Sigma \pi\rangle-\frac{1}{2}|\mathrm{~N} \overline{\mathrm{~K}}\rangle+\sqrt{\frac{1}{8}}|\Lambda \eta\rangle+\frac{1}{2}|\Xi \mathrm{~K}\rangle
$$

(1/2-)
$i \boldsymbol{\sigma} \cdot(p+\boldsymbol{\alpha})$ Matrix element
baryon meson
(1/2+)
(O^{-})
-k
k
$O|B 1 / 2+M\rangle$
$x \exp \left[-(b p)^{2} / 6\right]$

Simplified - weak FF+pole

Chiral-Unitary-like (lower cut off energy)

- semi-rela,(F.F.ㄱ․ wiss with pole (pp-coupling)

Simplified - weak FF+pole

Chiral-Unitary-like (lower cut off energy)

- semi-rela, (F.F.‥ with pole (1-coupling)

Simplified - CMI+pole

color-magnetic-like

- nonrela, - < $\lambda . \lambda \sigma . \sigma\rangle, w /$ pole (1-coupling)

$$
\begin{aligned}
& \text { Exp. }(-1.70 \pm 0.07) \\
& +i(0.68 \pm 0.04)
\end{aligned}
$$

Simplified

color-magnetic-like

- nonrela, - < $\lambda . \lambda \sigma . \sigma\rangle$, with pole (1coupling)

Simplified - CMI+pole

color-magnetic-like

- semirela, - < $\lambda . \lambda \sigma . \sigma\rangle, w /$ pole(1-coupling)

N \bar{K} scattering length
$=-0.67+0.34 \mathrm{i}$ (c.f. $-0.75+0.38$ i
for the original QCM)
w / o coupling Exp. (-1.70 ± 0.07) $+i(0.68 \pm 0.04)$

Simplified－CMI＋pole

color－magnetic－like

－semirela，－〈 $\lambda . \lambda \sigma . \sigma\rangle$, w／pole（pp－coupl．）

$$
\begin{array}{|c|}
\hline N \bar{K} \text { scattering length } \\
=-0.01+0.03 i
\end{array}
$$

w／o coupling Exp．（－1．70 $\pm 0.07)$ $+i(0.68 \pm 0.04)$

Results

Summary of our calculation

Potentials, BSEC, kinematics	E res	width	Porb. $q^{3} / N K$	NKbar scatt. length	self energy			
strong FF	E-dep	1407	50		-2.1	$0.59 i$		
strong FF		1408	24		-1.9	$0.25 i$		
weak FF	pp-pole	1404	18	0.7	-1.1	$0.18 i$	$-119-17 \mathrm{i}$	
weak FF	1 1-pole		1404	41	0.4	-1.7	$0.43 i$	$-104-49 i$
CMI	1-pole	nonrela	1406	44	2.8	-0.6	$0.25 i$	$-83-29 i$
CMI	1-pole		1406	56	2.7	-0.7	$0.34 i$	-78
CMI	pp-pole	1403	10	13.3	-0.0	$0.03 i$	-88	$-4 i$
Exp.		1406	50		-1.7	$0.68 i$		

Results

Peak energy can be reproduced by employing appropriate parameters.

Potentials, BSEC, kinematics		E res	width	Porb. $q^{3} / N K$	NKbar scatt. length	self energy
strong FF	E-dep	1407	50		-2.1 0.59 i	
strong FF		1408	24		-1.9 0.25 i	
weak FF	pp-pole	1404	18	0.7	-1.1 $0.18 i$	-119-17i
weak FF	1-pole	1404	41	0.4	-1.7 $0.43 i$	-104-49 i
CMI	1-pole nonrela	1406	44	2.8	-0.6 0.25 i	-83-29 i
CMI	1 -pole	1406	56	2.7	-0.7 $0.34 i$	-78-40 i
CMI	pp-pole	1403	10	13.3	-0.0 0.03 i	-88 -4i
Exp.		1406	50		-1.7 0.68i	

Results

Energy-dependent potential and 1-type transfer potential give broader width.

Potentials, BSEC, kinematics			E res	width	Porb. $q^{3} / N K$	NKbar scatt. length		self energy
strong FF		E-dep	1407	50		-2.1	0.59 i	
strong FF			1408	24		-1.9	0.25 i	
weak FF	pp-pole		1404	18	0.7	-1.1	$0.18 i$	-119-17i
weak FF	1-pole		1404	41	0.4	-1.7	0.43 i	-104-49 i
CMI	1 -pole	nonrela	1406	44	2.8	-0.6	0.25 i	-83-29 i
CMI	1 -pole		1406	56	2.7	-0.7	$0.34 i$	-78-40i
CMI	pp-pole		1403	10	13.3	-0.0	0.03 i	-88 -4i
Exp.			1406	50		-1.7	0.68 i	

Results

Probability of $q^{3} /$ NKbar is about $0.5 ?$

Potentials, BSEC, kinematics	E res	width	Porb. $q^{3} / N K$	NKbar scatt. length	self energy			
strong FF	E-dep	1407	50		-2.1	$0.59 i$		
strong FF		1408	24		-1.9	$0.25 i$		
weak FF	pp-pole	1404	18	0.7	-1.1	0.18 i	$-119-17 \mathrm{i}$	
weak FF	1-pole	1404	41	0.4	-1.7	0.43 i	$-104-49 \mathrm{i}$	
CMI	1-pole	nonrela	1406	44	2.8	-0.6	$0.25 i$	$-83-29 \mathrm{i}$
CMI	1-pole	1406	56	2.7	-0.7	$0.34 i$	-78	-40 i
CMI	pp-pole	1403	10	13.3	-0.0	0.03 i	-88	-4 i
Exp.		1406	50		-1.7	0.68 i		

Results

Probability of $q^{3} /$ NKbar is about $0.5 ?$

Real part of NKbar scattering length

Results

Probability of $q^{3} /$ NKbar is about $0.5 ?$

Potentials, BSEC, kinematics	E res	width	Porb. $q^{3} / N K$	NKbar scatt. length	self energy			
strong FF	E-dep	1407	50		-2.1	$0.59 i$		
strong FF		1408	24		-1.9	$0.25 i$		
weak FF	pp-pole	1404	18	0.7	-1.1	0.18 i	$-119-17 \mathrm{i}$	
weak FF	1-pole	1404	41	0.4	-1.7	0.43 i	$-104-49 \mathrm{i}$	
CMI	1-pole	nonrela	1406	44	2.8	-0.6	$0.25 i$	$-83-29 \mathrm{i}$
CMI	1-pole	1406	56	2.7	-0.7	$0.34 i$	-78	-40 i
CMI	pp-pole	1403	10	13.3	-0.0	0.03 i	-88	-4 i
Exp.		1406	50		-1.7	0.68 i		

Quark model v.s. Chiral unitary model

To reproduce the resonance energy of \wedge (1405),

- For the color-magnetic-like potential, one needs 'q3-pole'.
- For strong FF-type potential, there is no need to introduce the ' q-pole'.
- For weaker FF-type potential, one needs the ' q^{3} pole'. The NK scattering length seems better.
- No need to consider a internal degrees of freedom directly, or to be semi-relativistic.

Quark model v.s. Chiral unitary model

To reproduce the width of $\wedge(1405)$,

- The baryon-meson potential is energy dependent.
- The coupling of ' q '-pole' is 1-type.
- To reproduce the $N \bar{K}$ scattering length, The probability of the ' q 3-pole' seems about half of that of the $N \bar{K}$.

... and Outlook

Other Baryon resonances ?
Production and decay process ?
More (q \bar{q})-rich states ?

おしまい

