(1405)

March 2006 by C. Amster where the second MED 2006 by March 2006 by GUE Exotic States (actually four quarks and three quarks. In In 2006) and March 2006 by Exotic States (actually four quarks and three quarks. In In 2006) and three quarks. In In 2006, or qq-paul color color a low-mase and s quarks, hit ionized a low-mase and s quarks quarks and s quarks and s quarks quarks quarks and s quarks and Cee our review on

a into

1 oscribes

Pentaquarks (q⁴q̄)

Θ⁺, Ξ, …

JON-99 MESONS

- negative-parity $\Lambda^* \rightarrow \text{This talk}$
- S.T. and K.Shimizu, P.R. C76, 035204(07) (qq)² Mesonss.T. and K.Shimizu, arXiv:0812.2526
 - X(3872)
 - D*₀(2317)[±], D*₁(2460)[±]
 - f₀(600) f₀(980) a₀(980) κ (800) ?

Adding ($q\bar{q}$) is important because of the parity Ref. Particle Data Group 28 Feb 2009 @ 熱海

(q⁴q)(0s)⁵ v.s. q³(0s)²0p ?

Negative parity Baryons' mass from quark models

• q³ ~ 1600MeV

• q³+qq
(940 + 500~600) MeV + K + V

$$K < 3/2\hbar\omega_q$$
$$V < 0$$

 $q^3+q\bar{q}$ for $\Lambda(1405)$?

(q⁴q̄)(0s)⁵ V.S. q³(0s)²0p ?

Flavor-singlet P-wave q³ state ? • Observed $\Lambda_8 - \Lambda_1$ splitting Observed large LS splitting -These two facts are difficult to reproduce... S-wave q⁴q state ? • CMI $(\lambda \cdot \lambda)(\sigma \cdot \sigma)$ can be strongly attractive in some states of T=0 $J^{P}=1/2^{-1}$ - but also in T=1 1/2⁻ ····· Light Σ^* ? Hogaasen Sorba NPB145(78)119 28 Feb 2009 @ 熱海

$\Lambda(1405)$ is a resonance!

- Treating Λ(1405) as a resonance in the B-M scattering is absolutely necessary.
 - Chiral unitary model
 - Λ(1405) appears as a resonance in the BM scattering. Oset Ramos NPA635(98)99
 - Self energy of meson field
 - Mass of the q³ state reduces considerably.

Arima Matsui Shimizu PRC49(94)2831

$\Lambda(1405)$ is a resonance!

- How to extract signals from the continuum? (in the quark models)
 - solved models
 change model space
 - complex scaling method
 - configuration-restricted models
 quark cluster model Oka Yazaki

$\Lambda(1405)$ is a resonance!

- How to extract signals from the continuum? (in the quark models)
 - solved models
 change model space
 - complex scaling method
 - configuration-restricted models
 quark cluster model Oka Yazaki

Channel dep of VBM (T=0)

Short range part of VBM by the

	Σπ	NK	$\wedge \eta$	ΞK
Σπ	<u>-16</u> 3	116√7 21	1 <u>6√105</u> 105	0
NK		0	<u>28√15</u> 15	0
$\wedge \eta$			<u> 112 </u> 15	- <u>40√70</u> 21
ΞK				<u>-160</u> 21

Table:
Matrix elements,
$$-\langle \lambda.\lambda \sigma.\sigma \rangle$$

 $(\lambda . \lambda \sigma . \sigma)$ model

No peak is found for $q^4\overline{q}$!!

Provide the mass of Σπ is small → Kinetic term is large → Short range attraction is suppressed.
 No attraction in the NK channel.

With q³-pole …

$$(1405) = \alpha |q^3\rangle + \beta |q^3 - q\bar{q}\rangle$$

Transition potential is:

(q ³)	/ q ³ -	·qā> =	= \1	$q^{3}(0s)^{2}Op\rangle$ (BM $q^{4}\bar{q}(0s)^{5}$)
Λ ₁ 1/2-		Σ81	/2-	$\times \langle \downarrow \downarrow \uparrow \downarrow \downarrow \downarrow \rangle$
Σπ	145	$\wedge \pi$	-32	
NK	-85	Σπ	-51	
$\wedge \eta$	53	NK	60	
(in M	leV)	Ση	2	

q³-qq scattering with q³-pole \blacksquare q³-pole at $\Sigma\pi$ + 160MeV (~1490 MeV) gives a resonance at \sim 1405MeV! Takeuchi Shimizu PRC76(2007)035204 $\Sigma \pi + NK$ $\Sigma \pi$ + NK + pole δ (Rad) arb. unit $\Sigma\pi$ +NK-bar Scattering (L=0) Mass Spectrum

Scattering Observables

- mixing of Σπ and NK is strong at the threshold.
- NK scattering length : -0.75+i 0.38 fm

Exp. (-1.70±0.07) + *i*(0.68±0.04) Martin NPB179(81)33

Quark model v.s. Chiral unitary model

Takeuchi Shimizu arXiv:0812.2526

Quark model can reproduce the peak, but so does the chiral unitary model.

Quark model:

 quarks, no attraction between NKbar, nonrelativistic, q³ pole

Chiral Unitary model:

 no internal structure, large attraction between NKbar, semi-relativistic, no q³ pole

Simplified model

To understand the situation, we perform simplified baryon meson scattering problems such as

- scattering of baryon and meson without internal structure.
- semi-relativistic kinematics
- interaction is F.F like or $\lambda\lambda\sigma\sigma$ -like and separable.
- a 'q³-pole' may couple to the continuum.

Channel dep of VBM (T=0)

- **Short range part of VBM**
 - Difference is found in the NK diagonal part.
 - $-\langle \lambda . \lambda \sigma . \sigma \rangle$

 No NK diagonal attraction : need something to make a peak just below the NK threshold.

 $\langle \mathsf{F}.\mathsf{F} \rangle$

 NK diagonal attraction makes a peak just below the NK threshold.

Simplified model - int

separable int with gaussian cut-off
strength is the same as Oset-Ramos.
two types of channel dependence:
- (λ.λ σ.σ) (F.F)

	Σπ	NK	$\wedge \eta$		Σπ	NK	$\wedge \eta$		
Σπ	-5.33	3 14.61	-1.56	Σπ	-8	2.45	0		
NK		0	7.23	NK		-6	4.24		
$\Lambda \eta$ Short range attraction does not affects much because pion cannot stay close.									

Simplified - strong FF

Chiral-Unitary-like

• semi-rela, $\langle F.F \rangle$, no pole, energy-dep

Simplified - strong FF

Chiral-Unitary-like

• semi-rela, $\langle F.F \rangle$, no pole, energy-dep

Simplified - strong FF

Chiral-Unitary-like

Simplified model - q³ pole

Flavor singlet transition for FF model $|\mathbf{1}_{BM}\rangle = \sqrt{\frac{3}{8}}|\Sigma\pi\rangle - \frac{1}{2}|N\overline{K}\rangle + \sqrt{\frac{1}{8}}|\Lambda\eta\rangle + \frac{1}{2}|\Xi K\rangle$ $(1/2^{-})$ $i\sigma \cdot (p+\alpha k)$ Matrix element baryon meson $\propto \binom{1}{n^2} \times \exp[-(bp)^2/6]$ $(1/2^+)$ (0^-) k

Simplified - weak FF+pole

Chiral-Unitary-like (lower cut off energy)

Simplified - weak FF+pole

Chiral-Unitary-like (lower cut off energy)

Simplified - CMI+pole

color-magnetic-like

• nonrela, $-\langle \lambda . \lambda \sigma . \sigma \rangle$, w/ pole (1-coupling)

²⁸ Feb 2009 @ 熱海

Simplified

²⁸ Feb 2009 @ 熱海

Simplified - CMI+pole

color-magnetic-like

• semirela, $-\langle \lambda . \lambda \sigma . \sigma \rangle$, w/ pole(1-coupling)

Simplified - CMI+pole

color-magnetic-like

• semirela, $-\langle \lambda . \lambda \sigma . \sigma \rangle$, w/ pole(pp-coupl.)

Summary of our calculation

Potentials, BSEC, kinematics		E res	width	Porb. q ³ /NK	NKbar lenç	scatt. gth	self en	ergy	
strong FF		E-dep	1407	50		-2.1	0.59 i		
strong FF			1408	24		-1.9	0.25 i		
weak FF	pp-pole		1404	18	0.7	-1.1	0.18 i	-119	-17 i
weak FF	1-pole		1404	41	0.4	-1.7	0.43 i	-104	-49 i
CMI	1-pole	nonrela	1406	44	2.8	-0.6	0.25 i	-83	-29 i
CMI	1-pole		1406	56	2.7	-0.7	0.34 i	-78	-40 i
CMI	pp-pole		1403	10	13.3	-0.0	0.03 i	-88	-4 i
Exp.			1406	50		-1.7	0.68 i		

Peak energy can be reproduced by employing appropriate parameters.

Potentials, BSEC, kinematics	E res	width	Porb. q ³ /NK	NKbar len	⁻ scatt. gth	self en	ergy
strong FF E-dep	1407	50		-2.1	0.59 i		
strong FF	1408	24		-1.9	0.25 i		
weak FF pp-pole	1404	18	0.7	-1.1	0.18 i	-119	-17 i
weak FF 1-pole	1404	41	0.4	-1.7	0.43 i	-104	-49 i
CMI 1-pole nonrela	1406	44	2.8	-0.6	0.25 i	-83	-29 i
CMI 1-pole	1406	56	2.7	-0.7	0.34 i	-78	-40 i
CMI pp-pole	1403	10	13.3	-0.0	0.03 i	-88	-4 i
Exp.	1406	50		-1.7	0.68 i		

Energy-dependent potential and 1-type transfer potential give broader width.

Potentials, BSEC, kinematics			E res	width	Porb. q ³ /NK	NKbar sca length	tt. self energy
strong FF		E-dep	1407	50		-2.1 0.5	9 i
strong FF			1408	24		-1.9 0.2	5 i
weak FF	pp-pole		1404	18	0.7	-1.1 0.1	8i -119 -17i
weak FF	1-pole		1404	41	0.4	-1.7 0.4	3i -104 -49i
CMI	1-pole	nonrela	1406	44	2.8	-0.6 0.2	5i -83-29i
CMI	1-pole		1406	56	2.7	-0.7 0.3	4 i -78 -40 i
CMI	pp-pole		1403	10	13.3	-0.0 0.0	3i -88 -4i
Exp.			1406	50		-1.7 0.6	8 i

Probability of q³/NKbar is about 0.5?

BSEC, kir	nematics	E res	width	Porb. q ³ /NK	NKbar len	r scatt. Igth	self en	ergy
	E-dep	1407	50		-2.1	0.59 i		
		1408	24		-1.9	0.25 i		
pp-pole		1404	18	0.7	-1.1	0.18 i	-119	-17 i
1-pole		1404	41	0.4	-1.7	0.43 i	-104	-49 i
1-pole	nonrela	1406	44	2.8	-0.6	0.25 i	-83	-29 i
1-pole		1406	56	2.7	-0.7	0.34 i	-78	-40 i
pp-pole		1403	10	13.3	-0.0	0.03 i	-88	-4 i
		1406	50		-1.7	0.68 i		
	BSEC, kir	BSEC, kinematics E-dep pp-pole 1-pole 1-pole 1-pole pp-pole	BSEC, kinematics E res E-dep 1407 1408 pp-pole 1404 1-pole 1404 1-pole 1406 pp-pole 1403	BSEC, kinematics E res width E-dep 1407 50 1408 24 pp-pole 1404 18 1-pole 1404 41 1-pole 1406 56 pp-pole 1403 10 1406 50	BSEC, kinematics Eres width Porb. q ³ /NK E-dep 1407 50 1404 1408 24 1404 18 0.7 pp-pole 1404 18 0.7 1-pole 1404 41 0.4 1-pole 1406 56 2.7 pp-pole 1403 10 13.3 1+pole 1406 50 14.3	BSEC, kinematics E res width Porb. q^3/NK NKbar len E-dep 1407 50 -2.1 1408 24 -1.9 pp-pole 1404 18 0.7 -1.1 1-pole 1404 41 0.4 -1.7 1-pole 1406 56 2.7 -0.6 1-pole 1403 10 13.3 -0.0 pp-pole 1406 50 -1.7	BSEC, kinematics E res width Porb. q^3/NK NKbar scatt. length E-dep 1407 50 -2.1 0.59 i 1408 24 -1.9 0.25 i pp-pole 1404 18 0.7 -1.1 0.18 i 1-pole 1404 41 0.4 -1.7 0.43 i 1-pole nonrela 1406 44 2.8 -0.6 0.25 i 1-pole 1404 41 0.4 -1.7 0.43 i 1-pole 1406 56 2.7 -0.7 0.34 i pp-pole 1403 10 13.3 -0.0 0.03 i 1406 50 -1.7 0.68 i 0.50 -1.7 0.68 i	BSEC, kinematics E res width Porb. q^3/NK NKbar scatt. length Belf en E-dep 1407 50 -2.1 0.59 i - 1408 24 -1.9 0.25 i - - pp-pole 1404 18 0.7 -1.1 0.18 i -119 1-pole 1404 41 0.4 -1.7 0.43 i -104 1-pole nonrela 1406 44 2.8 -0.6 0.25 i -83 1-pole nonrela 1406 56 2.7 -0.7 0.34 i -78 pp-pole 1403 10 13.3 -0.0 0.03 i -88 1406 50 50 -1.7 0.68 i -88

Probability of q³/NKbar is about 0.5?

Probability of q³/NKbar is about 0.5?

BSEC, kir	nematics	E res	width	Porb. q ³ /NK	NKbar len	r scatt. Igth	self en	ergy
	E-dep	1407	50		-2.1	0.59 i		
		1408	24		-1.9	0.25 i		
pp-pole		1404	18	0.7	-1.1	0.18 i	-119	-17 i
1-pole		1404	41	0.4	-1.7	0.43 i	-104	-49 i
1-pole	nonrela	1406	44	2.8	-0.6	0.25 i	-83	-29 i
1-pole		1406	56	2.7	-0.7	0.34 i	-78	-40 i
pp-pole		1403	10	13.3	-0.0	0.03 i	-88	-4 i
		1406	50		-1.7	0.68 i		
	BSEC, kir	BSEC, kinematics E-dep pp-pole 1-pole 1-pole 1-pole pp-pole	BSEC, kinematics E res E-dep 1407 1408 pp-pole 1404 1-pole 1404 1-pole 1406 pp-pole 1403	BSEC, kinematics E res width E-dep 1407 50 1408 24 pp-pole 1404 18 1-pole 1404 41 1-pole 1406 56 pp-pole 1403 10 1406 50	BSEC, kinematics Eres width Porb. q ³ /NK E-dep 1407 50 1404 1408 24 1404 18 0.7 pp-pole 1404 18 0.7 1-pole 1404 41 0.4 1-pole 1406 56 2.7 pp-pole 1403 10 13.3 1+pole 1406 50 14.3	BSEC, kinematics E res width Porb. q^3/NK NKbar len E-dep 1407 50 -2.1 1408 24 -1.9 pp-pole 1404 18 0.7 -1.1 1-pole 1404 41 0.4 -1.7 1-pole 1406 56 2.7 -0.6 1-pole 1403 10 13.3 -0.0 pp-pole 1406 50 -1.7	BSEC, kinematics E res width Porb. q^3/NK NKbar scatt. length E-dep 1407 50 -2.1 0.59 i 1408 24 -1.9 0.25 i pp-pole 1404 18 0.7 -1.1 0.18 i 1-pole 1404 41 0.4 -1.7 0.43 i 1-pole nonrela 1406 44 2.8 -0.6 0.25 i 1-pole 1404 41 0.4 -1.7 0.43 i 1-pole 1406 56 2.7 -0.7 0.34 i pp-pole 1403 10 13.3 -0.0 0.03 i 1406 50 -1.7 0.68 i 0.50 -1.7 0.68 i	BSEC, kinematics E res width Porb. q^3/NK NKbar scatt. length Belf en E-dep 1407 50 -2.1 0.59 i - 1408 24 -1.9 0.25 i - - pp-pole 1404 18 0.7 -1.1 0.18 i -119 1-pole 1404 41 0.4 -1.7 0.43 i -104 1-pole nonrela 1406 44 2.8 -0.6 0.25 i -83 1-pole nonrela 1406 56 2.7 -0.7 0.34 i -78 pp-pole 1403 10 13.3 -0.0 0.03 i -88 1406 50 50 -1.7 0.68 i -88

Quark model v.s. Chiral unitary model

- To reproduce the resonance energy of $\Lambda(1405)$,
 - For the color-magnetic-like potential, one needs 'q³-pole'.
 - For strong FF-type potential, there is no need to introduce the 'q³-pole'.
 - For weaker FF-type potential, one needs the 'q³pole'. The NK scattering length seems better.
 - No need to consider a internal degrees of freedom directly, or to be semi-relativistic.

Quark model v.s. Chiral unitary model

- To reproduce the width of $\Lambda(1405)$,
 - The baryon-meson potential is energy dependent.
 - The coupling of 'q³-pole' is 1-type.
- To reproduce the NK scattering length,
 - The probability of the 'q³-pole' seems about half of that of the NK.

... and Outlook

- Other Baryon resonances ?
- Production and decay process ?
- More (qq̄)-rich states ?

おしまい