Belle実験 実験屋から理論家への期待・要望

宮林謙吉(奈良女大理) 「ストレンジネス核物理」研究会 @熱海 2009 Feb. 28th

研究会「多彩なフレーバーで探る新しいハドロン存在形態」 "Homework" discussionでのスライド(2008年12月6日・7日)

Home Works for Theorists

 So far works are done mainly for interpreting the observed phenomena. But, we need more predictions.

実験屋からも「何をpredictionすれば測定可能なのか?」 という、"入れ知恵"をせんかい、ということでしょう。

風変わり(エキゾチック)なハドロン

qq(メソン)、qqq(バリオン)でないものも可能性あり。

ペンタクオーク: e.g. an S=+1 バリオン

グルーボール: gluon-gluon color singlet states

テトラクオーク:

qq-gluonハイブリッド

構成要素としてcやbを含むと

• 軽いクォーク(u,d,s)は混ざる場合があるが

例:
$$\begin{aligned} f' &= \psi_8 \cos \theta - \psi_1 \sin \theta \\ f &= \psi_8 \sin \theta + \psi_1 \cos \theta \quad \to \eta \end{aligned}$$
$$\psi_8 &= \frac{1}{\sqrt{6}} (u\bar{u} + d\bar{d} - 2s\bar{s}) \\ \psi_1 &= \frac{1}{\sqrt{3}} (u\bar{u} + d\bar{d} + s\bar{s}) \end{aligned}$$

重いクオーク(M_c ~1.5GeV、 M_b ~5GeV)なので混ざらない。

 特にccの場合、J/ψ(ccの1S束縛状態)やψ'(2S束縛状態)はe⁺e⁻ やμ⁺μ⁻に崩壊してくれるので、実験データ中に明瞭な信号を得 やすい。bbの場合も、Υ(1S)、Υ(2S)、Υ(3S)はμ⁺μ⁻への崩 壊が使える。

Outline

- X(3872)を軸に、思うことあれこれ
- Initial State RadiationにおけるY粒子
- Bottomonium(-like)な粒子の話題
 Y_b→ Υ (nS)ππ

KEKB 加速器

8GeV(e⁻)X3.5GeV(e⁺)、世界最高のルミノシティ(輝度) これまでに出版された結果は个(4S):605fb⁻¹=660M BB、 个(5S):22fb⁻¹ + エネルギースキャンのデータを解析

汎用で粒子識別能力に優れた高分解能スペクトロメーター

X(3872)を軸に、思うことあれこれ

復習:ccを含むエキゾチックハドロン をB中間子崩壊中に探す

X(3872)は B→ J/ψ π⁺π⁻ K崩壊で J/ψ π⁺π⁻の質量分布に ピークとして出現

荷電テトラクォークの中には、チャーモニ ウムと荷電パイ中間子に崩壊するものが いるのでは? Β→チャーモニウム π[±] Kで チャーモニウム π[±] の質量分布にピークを 探そう!

B中間子崩壊のFull Reconstruction

Using $\Upsilon(4S) \rightarrow B\overline{B}$ kinematics

 $M_{bc} = \{ (E_{CM}/2)^2 - (\Sigma P_i)^2 \}^{1/2}$ Signal peaks at B mass (5.28GeV)

 $\Delta E = \Sigma E_i - E_{CM}/2$ Signal peaks at 0.

Charmonium(的) states in B decay

B decays as a source of "hidden charm"(charm anti-charm)

Cabbibo-favored diagram (V_{cb} and V_{cs}) \rightarrow commonly produced!

From Tom Browder (1)

- X(3872)
 - -The shape of the expected $D*\overline{D}$ distribution is of interest.
 - -Predictions for the ratio of X(3872) BFs into different modes.
 - -Does these ratios of BFs reveal something about the structureof the X(3872)? (i.e. what fraction is cc and what fraction is molecule).

$B \rightarrow D^{*0}\overline{D^0}K$ with 660M $B\overline{B}$

位相空間小→質量分解能効かなくなる。 分布の幅=X(3872)の幅? Other effects?

arXiv:0810.0358

X(3872) $\rightarrow 2\pi J/\psi$ and $3\pi J/\psi$

定して2πJ/ψの場合と比較できる?

Rev. X(3872), how about 1++?

これにはRosnerたちのformalismが役に立った。

BaBar's report \rightarrow Now Belle analysis on going.

$X(3872) \rightarrow \psi(2S)\gamma$ Results

- First evidence for X(3872) → ψ(2S) γ (~3.5σ significance)
- Measure: $BF(B^+ \rightarrow X(3872) \text{ K}^+) \mathbf{x}$ $(X(3872) \rightarrow \psi(2S) \gamma) =$ $(9.5+/-2.7+/-0.6) \mathbf{x} \ 10^{-6}$
- Set limits on other modes

3x larger Br. w.r.t J/ψ γ.

これも、molecule ならばψ'γへのbr. 小さいという predictionに触発 されたようだ。

15

X→(ψ(2S))γ at BaBar, QWG Workshop – Nara, Japan Bryan Fulsom, Dec. 3, 2008

Productionで何かわかることは?

 ΔM distributions for ψ ' and X are fitted simultaneously; detector resolution effect is automatically calibrated by ψ '.

B[±]→X(3872)K[±]とB⁰→X(3872)K_Sは ほぼ同じ崩壊分岐比。 arXiv

例えばB→ X(3872)πを考える

 $B^+ \rightarrow \psi' (\rightarrow J/\psi \pi^+ \pi^-) \pi^+$ の信号は見えている(PRD(R)78,051104)。 Mass windowをずらして、 $B^+ \rightarrow X(3872)(\rightarrow J/\psi \pi^+ \pi^-) \pi^+$ の探索は可能。 Final State Interactionが効いて、単純なCabbibo suppressionの予想 よりも、tetraquarkやmoleculeといったモデルによっては、大幅に enhanceされる、またはsuppressされる、という見積もりがあれば測定を 行う立場にとってはencouraging。

From Tom Browder (2)

- For other new particles, Y(3940), Y(4260), Z(4430), etc.
 - There is usually only a single decay mode observed.
 - If these are real new particles, we should expect to find other decay modes.
 - We need predictions for ratios of the dominant decay mode to other decay modes.
 - What are these additional modes ?
 - Are we searching for them ?

Initial State Radiationにおける Y粒子

ccを含む"Y"粒子

衝突直前のe⁺(またはe⁻)が光子を放出、 有効な衝突エネルギーが下がって生じる 反応がある。Radiative return、または Initial State Radiation(ISR)と呼ばれる。

Y_b:bクォーク対を含む新しい ハドロン

" Υ (5S)" \rightarrow Υ (nS) $\pi^+\pi^-$ (n=1,2,..)

らべて数十倍も大きい!(PRL100,112002)

終状態(=曲目)を Υ (1S) $\pi^{+}\pi^{-}$, Υ (2S) $\pi^{+}\pi^{-}$ に限ると、 Υ (5S)(bbの束縛状態) とほぼ同じ質量のもう一つの粒子 Y_{b} が作られて、重なり合っているのでは? (=ほぼ同じ音程で、その曲だけ得意な演奏者が隠れている?)

重心系エネルギーを10.689GeVの近傍で変えながらデータ収集 (= Y_b と Υ (5S)の音色の違いを調べたい)=エネルギースキャン

エネルギースキャンの結果

Belle preliminary

BB、B_sB_sなど"全曲目" 既知の℃(5S)(あるいは ℃(6S))データと無矛盾。

Υ(ns)ππに限ると、ピーク位置と
幅が既知のYと違う!
M=10889.6±1.8(stat)±1.5(syst) MeV
F=54.7+8.5/-7.2(stat)±2.5(syst) MeV
Bottomonium-likeなexotic
hadronの質量、幅、崩壊モードの
見積もりが早期に出てくれば、run
のscheduleにフィードバックできる
かも。

まとめ

- X(3872)
 - 複数の崩壊モードで観測されている唯一のexotic hadron。
 - 複数の崩壊モードの分岐比どうしの比と、構造=正体をあばく議論を結びつける見積もりが欲しい。
 - B decayにおけるProduction mechanismと構造=正体をあばく議論を 結びつける見積もりが欲しい。
- Z(4430)、Y(4260)、等
 - 発見されたパターン以外の崩壊モードは?
 - 複数の崩壊モードの分岐比どうしの比と、構造=正体をあばく議論を結びつける見積もりが欲しい。
- Y_b: 質量10889.6 GeVで、 Υ(nS)ππに崩壊、既知の Υ(5S)とは 別物であるとエネルギースキャンで明らかに。
 - Bottomonium-likeなexotic hadronの質量、幅、崩壊モードの見積もりが早期に得られれば、runのscheduleにフィードバックできるかも。