Charmed & bottomed mesons ~ 重いクォークを含むマルチクォーク系 ~

- Heavy flavor exotic hadrons
 S. H. Lee and S. Y. arXiv:0901.2977 [hep-ph]
- Exotic nuclei with heavy flavor mesons S. Y. and K. Sudoh, in preparation

S. Yasui (KEK)

27-28 Feb. 2009

特定領域研究「ストレンジネスで探るクォーク多体系」理論班主催 「ストレンジネスを含むクォーク多体系分野の理論的将来を考える」研究会 KKRホテル熱海

Contents

- Introduction
- Exotic charm mesons
- Explicitly exotic heavy hadrons
 - Tetraquark with C=±2
 - Pentaquark
 - H dibaryons
- Observation
- Conclusion
- Perspective to exotic nuclei with heavy flavor

QUESTIONS

What is exotic hadron? tetra-, penta-, hexa-, ...

What is flavor world in nuclear physics? up, down, strange, charm, bottom, top

What is exotic hadron?

uu^{bar}dd^{bar} Tetraquark f₀(980), a₀(980), ... uu^{bar}sc^{bar} D_c(2317), D_c(2460), ... (Hybrid) uu^{bar}cc^{bar} X(3872), Y(4260), ... uudss^{bar} Λ*(1405), N(1535), Pentaquark uudds^{bar} Θ(1540) H dibaryon Η uuddss

What is exotic hadron?

What is exotic hadron?

exotics?

X(3872), X(3940), Y(4260), Z(4430)⁺, ...

Why exotic?

- small decay width (< 50 MeV)
- mass different from cc^{bar} model (~100 MeV)

S. L. Zhu 2005

Let's explore exotic charm hadrons !!

But WHAT shall we see?

Explicitly exotic hadrons

- ✓ Tetraquark T_{cc} , T_{cb} , T_{bb}
- ✓ Pentaquark Θ_{cs} , Θ_{bs}
- ✓ H dibaryon H_c , H_b , H_{cb} , ...

What does "explicit" mean?

✓ Tetraquark T_{cc} (c^{bar}c^{bar}ud; C=+2)

 T_{cc} cannot be regared as two quark state. So, it is "explicitly" exotic.

> Carlson, Heller, Tjon (1988) Silvestre-Brac and Semay (1993) Manohar and Wise (1993)

✓ Tetraquark T_{cc} (c^{bar}c^{bar}ud; C=+2)

Stable against decay to two D meosns?

✓ Tetraquark T_{cc} (c^{bar}c^{bar}ud; C=+2)

Stable against decay to two D meosns?

We consider color-spin interaction.

 $C_H \sum_{i>j} \vec{s_i} \cdot \vec{s_j} \frac{1}{m_i m_j} \qquad C_H = v_0 \lambda_i \cdot \lambda_j \langle \delta(r_{ij}) \rangle$ $\vec{s_i} \cdot \vec{s_j} = \begin{cases} -3/4 \text{ for spin sinlet} \\ 1/4 \text{ for spin triplet} \end{cases}$ $m_{u,d} = 300, \ m_s = 500, \ m_c = 1500, \ m_b = 4700 \text{ [MeV]}$

✓ Tetraquark T_{cc} (c^{bar}c^{bar}ud; C=+2)

We consider color-spin interaction.

 $C_{H} \sum_{i>j} \vec{s_{i}} \cdot \vec{s_{j}} \frac{1}{m_{i}m_{j}} \qquad C_{H} = v_{0}\lambda_{i} \cdot \lambda_{j} \langle \delta(r_{ij}) \rangle$ $\vec{s_{i}} \cdot \vec{s_{j}} = \begin{cases} -3/4 \text{ for spin sinlet} \\ 1/4 \text{ for spin triplet} \end{cases}$ $m_{u,d} = 300, \ m_{s} = 500, \ m_{c} = 1500, \ m_{b} = 4700 \text{ [MeV]}$

✓ Tetraquark T_{cc} (c^{bar}c^{bar}ud; C=+2)

- ✓ Tetraquark T_{cc} (c^{bar}c^{bar}ud; C=+2)
 - 1) How is color-spin interaction nice?

qq pair (C_B/m_u^2 =193 MeV)

Mass Diff.	$M_{\Delta} - M_N$	$M_{\Sigma} - M_{\Lambda}$	$M_{\Sigma_c} - M_{\Lambda_c}$	$M_{\Sigma_b} - M_{\Lambda_b}$
Formula	$\frac{3C_B}{2m_u^2}$	$\left[\frac{C_B}{m_u^2}\left(1-\frac{m_u}{m_s}\right)\right]$	$\frac{C_B}{m_u^2} \left(1 - \frac{m_u}{m_c}\right)$	$\left[\frac{C_B}{m_u^2}\left(1-\frac{m_u}{m_b}\right)\right]$
Fit	$290 { m MeV}$	$77 \mathrm{MeV}$	$154 { m MeV}$	$180 { m ~MeV}$
Experiment	$290 { m MeV}$	$75 \mathrm{MeV}$	$170 { m ~MeV}$	$192 { m ~MeV}$

qq^{bar} pair (C_M/m_u²=635 MeV)

		- 111	u	-
Mass Diff.	$M_{\rho} - M_{\pi}$	$M_{K^*} - M_K$	$M_{D^*} - M_D$	$M_{B^*} - M_B$
Formula	$\frac{C_M}{m_u^2}$	$rac{C_M}{m_u m_s}$	$rac{C_M}{m_u m_c}$	$rac{C_M}{m_u m_b}$
Fit	635 MeV	$381 { m ~MeV}$	$127 { m ~MeV}$	$41 { m MeV}$
Experiment	$635 { m MeV}$	$397 { m ~MeV}$	$137 { m ~MeV}$	$46 { m MeV}$

 $(C_M \approx 3C_B \leftarrow \text{color factor } \lambda_i \lambda_i)$

Consistent fitting with experimental data.

- ✓ Tetraquark T_{cc} (c^{bar}c^{bar}ud; C=+2)
 - 2) Binding energy of diquarks with flavor combination.

$$-\frac{3}{4}\frac{C_B}{m_{q_1}m_{q_2}}$$

(spin singlet and color anti-triplet)

(ud)				
-144.75				
(us)	(ds)			
-86.85	-86.85			
(uc)	(dc)	(sc)		
-28.95	-28.95	-17.37		
(ub)	(db)	(sb)	(cb)	
-9.23	- 9.23	-5.54	-1.84	MeV

- ✓ Tetraquark T_{cc} (c^{bar}c^{bar}ud; C=+2)
 - 2) Binding energy of diquarks with flavor combination.

✓ Tetraquark T_{cc} (c^{bar}c^{bar}ud; C=+2)

Binding energy of $T_{cc(bb)}$

	$udar{c}ar{c}$	$usar{c}ar{c}$	$dsar{c}ar{c}$
T^1_{cc}	-74.9	-4.3	-4.3
	$\bar{D}^0 + D^{*-}, \bar{D}^{*0} + D^-$	$\bar{D}^0 + D_s^{*-}$	$D^- + D_s^{*-}$
	$udar{b}ar{b}$	$usar{b}ar{b}$	$ds \overline{b} \overline{b}$
T^1_{bb}	-123.8	-61.4	-61.4
	$B^+ + B^{*0}, B^{*+} + B^0$	$B^+ + B_s^{*0}$	$B^0 + B_s^{*0}$

MeV

 \rightarrow T_{cc(bb)} are stable as 3^{bar}_f multiplet of SU(3)_f.

✓ Pentaquark Θ_{cs} (udusc^{bar})

✓ Pentaquark Θ_{cs} (udusc^{bar})

color-spin interaction. $C_H \sum_{i>j} \vec{s_i} \cdot \vec{s_j} \frac{1}{m_i m_j} \qquad C_H = v_0 \lambda_i \cdot \lambda_j \langle \delta(r_{ij}) \rangle$ $\vec{s_i} \cdot \vec{s_j} = \begin{cases} -3/4 \text{ for spin sinlet} \\ 1/4 \text{ for spin triplet} \end{cases}$ $m_{u,d} = 300, m_s = 500, m_c = 1500, m_b = 4700 \,[\text{MeV}]$

✓ Pentaquark Θ_{cs} (udusc^{bar})

us pair (spin singlet) is driving attraction.

color-spin interaction. $C_{H} \sum_{i>j} \vec{s_{i}} \cdot \vec{s_{j}} \frac{1}{m_{i}m_{j}} \qquad C_{H} = v_{0}\lambda_{i} \cdot \lambda_{j} \langle \delta(r_{ij}) \rangle$ $\vec{s_{i}} \cdot \vec{s_{j}} = \begin{cases} -3/4 \text{ for spin sinlet} \\ 1/4 \text{ for spin triplet} \end{cases}$ $m_{u,d} = 300, \ m_{s} = 500, \ m_{c} = 1500, \ m_{b} = 4700 \text{ [MeV]}$

✓ Pentaquark Θ_{cs} (udusc^{bar})

us pair (spin singlet) is driving attraction.

	Binding energy of Θ _{sc(b)}									
	config. of Θ	config. of $M + B$	$ar{u}$	$ar{s}$	\bar{c}	\overline{b}				
Θ_{qs}	$udusar{q}$	$uds + uar{q}$	389.4	198.9	8.4	-56.4				
Θ	usdsar q	$dss{+}uar{q}$	389.4	198.9	8.4	-56.4				
Cqss		$uds + sar{q}$	256.8	142.5	28.4	-10.7	Me\			

✓ Pentaquark Θ_{cs} (udusc^{bar})

us pair (spin singlet) is driving attraction.

 $\rightarrow \Theta_{\rm bs}$ and $\Theta_{\rm bss}$ are stable as 3_f multiplet of SU(3)_f.

✓ H dibaryon H_c (udusuc)

✓ H dibaryon H_c (udusuc)

		flavor	config. of H	Ι	I_z	S	config. of $B + B'$	$B_H [{\rm MeV}]$
Η	qqqqqq	22200	udusds	0	0	-2	uds + uds	-28.95
		31110	ud us uc	1	1	-1	udc + usu, udu + usc	
		22110	$ud \frac{1}{\sqrt{2}}(us dc + ds uc)$	1	0	-1	uds+udc,uds+udc	-28.95
н	qqqqqQ	13110	uddsdc	1	-1	-1	udc + dsd, udd + dsc	
L C	(Q=c)	21210	udussc	1/2	1/2	-2	udc + uss, uds + usc	-17.37
		12210	uddssc	1/2	-1/2	-2	udc + dss, uds + dsc	
		11310	$\frac{1}{\sqrt{2}}(usds - dsus)sc$	0	0	-3	uss + dsc, usc + dss	-17.37
		31101	udusub	1	1	-1	udu + usb, udb + usu	
		22101	$ud \frac{1}{\sqrt{2}}(us db + ds ub)$	1	0	-1	uds + udb, uds + udb	-9.23
H.	qqqqqQ	13101	ud ds db	1	-1	-1	ud b + ds d, ud d + ds b	
'' b	(Q=b)	21202	udussb	1/2	1/2	-2	ud b + us s, ud s + us b	-5.54
		12201	uddssb	1/2	-1/2	-2	ud b + ds s, ud s + ds b	
		11301	$\frac{1}{\sqrt{2}}(usds - dsus)sb$	0	0	-3	us b + ds s, us s + ds b	-5.54
ĺ		31011	ud uc ub	1	1	0	ud b + uc u, ud u + uc b	
		22011	$ud \frac{1}{\sqrt{2}}(uc db + dc ub)$	1	0	0	ud b + uc u, ud u + uc b	-9.23
	qq qQ qQ' $(Q, Q' = c, b)$	13011	ud dc db	1	-1	0	ud b + dc d, ud d + dc b	
		30111	usucub	3/2	3/2	-1	usu + ucb, usb + ucu	
H		21111	$\frac{1}{\sqrt{3}}((usdc+dsuc)ub+usucdb)$	3/2	1/2	-1	ud b + us c, ud c + us b	-9.23
do		12111	$\frac{1}{\sqrt{3}}((usdc+dsuc)db+dsdcub)$	3/2	-1/2	-1	ud b + ds c, ud c + ds b	
		03111	ds dc db	3/2	-3/2	-1	ds b + dc d, ds d + dc b	
		10311	usscsb	1/2	1/2	-3	usb + scs, uss + scb	-5.54
		01311	dsscsb	1/2	-1/2	-3	ds b + sc s, ds s + sc b	
		21111	uduscb	1/2	1/2	-1	ud b + us c, ud c + us b	-1.84
H'_{ch}	qqqqQQ'	12111	uddscb	1/2	-1/2	-1	ud b + ds c, ud c + ds b	
CD	(Q,Q'=c,b)	11211	$\frac{1}{\sqrt{2}}(usds - dsus)cb$	0	0	-2	us b + ds c, us c + ds b	-1.84
		21021	ud uc cb	1/2	1/2	0	ud b + uc c, ud c + uc b	-1.84
		12021	uddccb	1/2	-1/2	0	ud b + dc c, ud c + dc b	
H _{cch}	qqqQQQ'	20121	us uc cb	1	1	-1	us b + uc c, us c + uc b	
	(Q,Q'=c,b)	11121	$\frac{1}{\sqrt{2}}(usdc+dsuc)cb$	1	0	-1	usb + dcc, usc + dcb	-1.84
		02121	ds dc cb	1	-1	-1	$ds \overline{b + dc c, ds c + dc b}$	
		11121	udsccb	0	0	-1	ud b + sc c, ud c + sc b	-1.84

		flavor	config. of H	Ι	I_z	S	config. of $B + B'$	B_H	[MeV]	
Η	qqqqqq	22200	udusds	0	0	-2	uds + uds		-28.95	
		31110	ud us uc	1	1	-1	ud c + us u, ud u + us c		X	
		22110	$ud \frac{1}{\sqrt{2}}(us dc + ds uc)$	1	0	-1	uds + udc, uds + udc		-28.95	
н	qqqqqQ	13110	uddsdc	1	-1	-1	udc + dsd, udd + dsc			
L _C	(Q=c)	21210	udussc	1/2	1/2	-2	udc + uss, uds + usc	1	-17.37	
		12210	ud ds sc	1/2	-1/2	-2	udc + dss, uds + dsc	 		
		11310	$rac{1}{\sqrt{2}}(usds-dsus)sc$	0	0	-3	uss + dsc, usc + dss		-17.37	
		31101	ud us ub	1	1	-1	ud u + us b, ud b + us u			
		22101	$ud \frac{1}{\sqrt{2}}(us db + ds ub)$	1	0	-1	uds + udb, uds + udb		-9.23	
H.	qqqqqQ	13101	ud ds db	1	-1	-1	ud b + ds d, ud d + ds b			
••b	(Q=b)	21202	udussb	1/2	1/2	-2	ud b + us s, ud s + us b		-5.54	
		12201	uddssb	1/2	-1/2	-2	udb + dss, uds + dsb			
		11301	$\frac{1}{\sqrt{2}}(usds - dsus)sb$	0	0	-3	us b + ds s, us s + ds b		-5.54	
		31011	ud uc ub	1	1	0	ud b + uc u, ud u + uc b			
		22011	$ud \frac{1}{\sqrt{2}}(uc db + dc ub)$	1	0	0	udb + ucu, udu + ucb		-9.23	
		13011	ud dc db	1	-1	0	ud b + dc d, ud d + dc b			
		30111	us uc ub	3/2	3/2	-1	usu + ucb, usb + ucu			
Hch	$qqqQqQ^\prime$	21111	$\frac{1}{\sqrt{3}}((usdc+dsuc)ub+usucdb)$	3/2	1/2	-1	udb + usc, udc + usb		-9.23	
CD	(Q, Q' = c, b)	12111	$\frac{1}{\sqrt{3}}((usdc+dsuc)db+dsdcub)$	3/2	-1/2	-1	ud b + ds c, ud c + ds b			
		03111	ds dc db	3/2	-3/2	-1	ds b + dc d, ds d + dc b			
		10311	usscsb	1/2	1/2	-3	usb + scs, uss + scb		-5.54	
		01311	ds sc sb	1/2	-1/2	-3	ds b + sc s, ds s + sc b			
		21111	uduscb	1/2	1/2	-1	udb + usc, udc + usb		-1.84	
H'_{ch}	qqqqQQ'	12111	uddscb	1/2	-1/2	-1	ud b + ds c, ud c + ds b			ł
	(Q, Q' = c, b)	11211	$\frac{1}{\sqrt{2}}(usds - dsus)cb$	0	0	-2	us b + ds c, us c + ds b		-1.84	
		21021	uduccb	1/2	1/2	0	ud b + uc c, ud c + uc b		-1.84	
		12021	uddccb	1/2	-1/2	0	udb + dcc, udc + dcb			
H _{ccb}	qqqQQQ'	20121	us uc cb	1	1	-1	usb+ucc, usc+ucb			
	(Q, Q' = c, b)	11121	$\frac{1}{\sqrt{2}}(usdc+dsuc)cb$	1	0	-1	usb + dcc, usc + dcb		-1.84	
		02121	ds dc cb	1	-1	-1	ds b + dc c, ds c + dc b			ł
		11121	udsccb	0	0	-1	udb + scc, udc + scb		-1.84	

✓ H dibaryon H_c (udusuc) multiplets of SU(3)_f.

 \rightarrow H dibaryons (H, H_c, H_b, ...) are stable as 3_f multiplet of SU(3)_f.

✓ H dibaryon H_c (udusuc) multiplets of SU(3)_f.

 \rightarrow H dibaryons (H, H_c, H_b, ...) are stable as 3_f multiplet of SU(3)_f.

 ✓ LHC (Large Hadron Collider) from QGP (Quark Gluon Plasma)

✓ Belle, BaBar, etc.
 from e⁺e⁻ (or pp) collisions

✓ LHC (Large Hadron Collider) QGP (Quark Gluon Plasma)

✓ LHC (Large Hadron Collider) QGP (Quark Gluon Plasma)

✓ Belle, BABAR, etc.
 e⁺e⁻ (or pp) collisions

double charm production

Belle $e^+e^- \rightarrow J/\psi \eta_c$ PRL89, 142001 (2002) $J/\psi \chi_c, J/\psi \eta_c$ (2S)PRD70, 071102 (2004)

BABAR $e^+e^- \rightarrow J/\psi \eta_c, J/\psi \chi_{c0}, J/\psi \eta_c$ (2S) PRD72, 031101 (2005)

 \rightarrow Possible to search T_{cc}+c+c ?

Conclusion

- Explicitly exotic hadrons with charm and bottom would be stable.
 - Tetraquark T_{cc} (udc^{bar}c^{bar}), T_{bb} (udb^{bar}b^{bar})
 - Pentaquark Θ_{bs} (udusb^{bar}), Θ_{bss} (usdsb^{bar})
 - H dibaryon H_c (udusuc), H_b (udusub), ...
- Heavy ion collisions and e⁺e⁻ collisions would be available to search exotic mesons.
- More sophisticated calculation (ex. by quark model, QCDSR, HQET, Lattice QCD) is required.

Heavy flavor (charm&bottom) nuclei.

Heavy flavor (charm&bottom) nuclei.

Bando, PTP Suppl. 81, 197 (1985)