特定領域研究「ストレンジネスで探るクォーク多体系」理論班 『ストレンジネスを含むクォーク多体系分野の理論的将来を考える』 平成21年2月27-28日 KKR熱海@熱海市

ベクトル中間子を含むハドロン共鳴

~ Radiative decays of mesons as dynamically generated resonances ~

<u>永廣 秀子</u>,^{1,2)} Luis Roca,³⁾ 保坂 淳,²⁾ Eulogio Oset⁴⁾

¹⁾ 奈良女子大学 理学部,²⁾ 大阪大学 核物理研究センター, ³⁾ Murcia University, Spain,⁴⁾ Valencia University, Spain.

A1, B1 RADIATIVE DECAYS WITH HIDDEN GAUGE FORMALISM •<u>H. Nagahiro</u>, L. Roca, A. Hosaka and E. Oset, Phys. Rev. **D79**, 014015, (2009).

RADIATIVE DECAYS OF MESONS etc.

- H. Nagahiro, L. Roca, E. Oset and B.S. Zou, Phys. Rev. D78, 014012 (2008).
- <u>H. Nagahiro</u>, L. Roca and E. Oset, Eur. Phys. J. A 36, 73-84 (2008).
- <u>H. Nagahiro</u>, L. Roca, E. Oset, Phys. Rev. **D77**, 034017 (2008).
- H. Nagahiro, J. Yamagata-Sekihara, E. Oset and S. Hirenzaki, e-print arXiv:0809.3717 [hep-ph].
- R. Molina, A. Hosaka, <u>H. Nagahiro</u>, E. Oset, in preparation.

- ハドロン-ハドロン系で構成される共鳴状態
 - » pseudo-scalar pseudo-scalar \Re (ππ, KK^{bar}, etc.)
 - > σ , f₀(980), a₀(980) scalar mesons
 - » pseudo-scalar baryon (πN , ηN , $K\Sigma$, ... / $\pi\Sigma$, $K^{bar}N$, ...)
 - > N*(1535), Λ (1405) baryon resonances
 - » ベクトル中間子を含むハドロン共鳴の研究
 - > pseudo-scalar-vector \rightarrow axial vector meson (~1GeV)
 - (π, K, η) (ρ, K^*, ω, ϕ) $a_1(1260), b_1(1235), K_1(1270)$ two pole, etc...
 - » ベクトル-ベクトル相互作用のある場合
 - > vector(ρ) vector(ρ /D*) → f₀(1370), f₂(1270) / D*₂(2460), D*₁(2640), D*₀(2600)?,
 - > vector baryon \rightarrow N*, Δ *, ...
 - Kaneko, Nagahiro, Hosaka; (ρ-N with hidden) (金子, 春の学会@立教 2009.3)
 - M. Lutz etc., VN coupled channel
 - team E. Oset (ρ - Δ system)

- 構造を知る ~ ハドロン分子 ? qq^{bar}/qqq 状態 ?
 - » 生成反応をみる
 - > K₁(1270) two poles evidence in K⁻p \rightarrow K⁻ $\pi^+\pi^+$ p

L.S.Geng, E.Oset, L.Roca, J.A.Oller, PRD75(07)014017.

- » 環境を変えて応答をみる
 - > mesic nuclei ... hadrons in matter
 - eta mesic nuclei «N*(1535) in medium», Kaonic nuclei «L(1405) in medium» ... etc.
 - large width (Γ ~ 100 MeV) や meson mass m_{meson} > 1GeV の時、難あり
- » 崩壊幅をみる
 - > strong decay width
 - radiative decay width
- vector meson を含む系 and/or vector meson を通した崩壊
 - » vector 粒子の導入の仕方
 - > Tensor formalism, vector formalism, hidden gauge formalism,...

Recent (our) works

- radiative decays of dynamically generated resonances
 - » radiative decays of axial vectors (PV)
 - > $a_1(1260)$, $b_1(1235)$, $h_1(1170)$, $h_1(1380)$, $f_1(1285)$, $f_1(1420)$, two K₁(1270)'s → Pγ
 - L. Roca, A. Hosaka, E. Oset, Phys. Lett. B658 (2007) 17-26.
 - H. Nagahiro, L. Roca, E. Oset, Phys.Rev.D77 (2008) 034017.
 - » $f_0(980)/a_0(980) \rightarrow V\gamma$ (KK^{bar} loop contribution)

H. Nagahiro, L. Roca, E. Oset, Eur.Phys.JA36 (2008) 73.

- > proposal at COSY
- » $(f_0(1370/1500/1710) \rightarrow V\gamma)$
 - H. Nagahiro, L. Roca, E. Oset, B.S. Zou, Phys. Rev. D78 (2008) 014012.
 - > (KK^{bar} loop contribution (not dynamically generated resonance))
- » a₁(1260), b₁(1235) radiative decays with hidden gauge formalism
 H.Nagahiro, L.Roca, A. Hosaka, E. Oset, Phys.Rev.D79 (2009) 014015.
- » ρ - ρ : f₀(1370) and f₂(1270)

R. Molina, D. Nicmorus, E. Oset , Phys.Rev.D78 (2008) 114018.

> their radiative decays into $\gamma\gamma$

H.Nagahiro, J.Sekihara-Yamagata, S.Hirenzaki, E.Oset, hep-ph/0809.3717. ...?

» ρ -D*: D*₂(2460), D*₁(2640), D*₀(2600)

R. Molina, A. Hosaka, H. Nagahiro, E. Oset, in preparation

Introduction : radiative decays of axial vector mesons

- radiative decays of axial vectors $A
 ightarrow P \gamma$
 - » give information on nature of the axial-vectors
- some works for radiative decays of axial vectors
- quark model + vector meson dominance (VMD)
 aq^{bar} composite particle J.L.Rosner, PRD23 (1981) 1127.

− $\Gamma_{a^{+} \rightarrow \pi^{+} \gamma}$ = 1.0 ~ 1.6 MeV; $\Gamma_{b^{+} \rightarrow \pi^{+} \gamma}$ = 184 <u>+</u> 30 keV

− $\Gamma_{a^+ \to \pi^+ \gamma}$ = 320 ~ 470 keV; $\Gamma_{b^+ \to \pi^+ \gamma}$ = 19 ~ 36 keV

an elementary particle

based on the chiral unitary approach (as a quasi-bound state of VP) L.Roca, A. Hosaka, E. Oset, PLB658 (2007) 17; <u>H.Nagahiro</u>, L.Roca, E. Oset, PRD77(08)034017.

$$- \Gamma_{a^{+} \rightarrow \pi^{+} \gamma} = 460 \pm 100 \text{ keV}; \ \Gamma_{b^{+} \rightarrow \pi^{+} \gamma} = 210 \pm 40 \text{ keV}$$

H.Nagahiro, L.Roca, A. Hosaka, E. Oset, PRD79 (2009) 014015.

− $\Gamma_{a^+ \rightarrow \pi^+ \gamma}$ = 133 ± 70 keV; $\Gamma_{b^+ \rightarrow \pi^+ \gamma}$ = 209 ± 90 keV

-+ 実験値 ++
-
$$\Gamma_{a^+ \to \pi^+ \gamma} = 640 \pm 246 \text{ keV} [1]; \Gamma_{b^+ \to \pi^+ \gamma} = 230 \pm 60 \text{ keV} [2]$$

[1] M.Zielinski et al., PRL52 (1984) 1195. [2] B.Collick et al., PRL53 (1984) 2734.

ダイナミカルに生成される共鳴としての軸性ベクトル中間子

Chiral Unitary approach for low lying axial vectors

L.Roca, E.Oset and J.Singh, PRD72(05)014002

熱油

8

ス研究会

2009 ストレンジーネ

Feb.

28

1⁺ resonance ... $b_1(1235)$, $a_1(1260)$, $h_1(1170)$, $h_1(1380)$, $f_1(1285)$, two $K_1(1270)$ s

building blocks

pseudo-scalar octet ... π , K, η vector nonet ... ρ , K*, ω , ϕ

K₁(1270) double pole picture

L.Roca, E.Oset and J.Singh, PRD72(05)014002

1, I=1/2 chan	<u>nel</u> K ₁ (1270) _o	ι	K ₁ (1270)	β	
$\sqrt{s_p}$	1112 <i>- i</i> 64		1216 - i4		
	g_i	$ g_i $	g_i	$ g_i $	
ϕK	1587 - i872	1811	1097 - i400	1168	
ωK	-1860 + i649	1970	-1033 + i375	1099	
ρK	-1524 + i1154	1912	5274 + i297	5282	
$K^*\eta$	27 + i155	157	3459 - i95	3460	
$K^*\pi$	4187 - i2098	4683	340 - i984	1041	
	1				
K ₁ (127	0) I(J ^P)=1/2(1+)	Clear discrepancy between different methods of determination of the $K_1(1270)$ width. (PDG04)			
m = 1272 ± 7MeV Γ = 90 ± 20 MeV			Γ by experiment with <mark>Kaon</mark> beam [K⁻p → K⁻2πp]	>	Γ by experiment with pion beam $[\pi^-p \rightarrow \Lambda K2\pi]$
<u>vo poles fo</u>	<u>r K₁(1270)</u>			<u> </u>	
kperimental sup S.Geng, E.Oset, I	ports in K [−] p → K [−] π ⁺ π ⁺ L.Roca, J.A.Oller, PRD75(⁺p (07)014017.	PDG20 "Well de of GEN	07 escribed in th IG 07 with tw	ne chiral unitary approact

Formalism of the radiative decay of the axial vectors as dynamically generated resonances

dynamical generated resonance

A ... axial vectors (dynamically generated resonance)

P ... pseudoscalar mesons [π , K, η]

V ... vector mesons $[\rho, \omega, K^*, \phi]$

contributing diagrams (taken into account in this work)

null contributions from a_1 - π mixing Q 🗕 Q loop function $J(Q^2)$ $J(Q^2) \sim \int \frac{d^4q}{(4\pi)^4} D(q) D(Q-q)$ \overline{Q}_{μ} Full propagator of a_1 with a_1 - π mixing $= \frac{a_1}{1} + \frac{$

$$\sim \frac{1}{Q^2 - m_A^2} + \frac{1}{Q^2 - m_A^2} J \frac{1}{Q^2 - m_\pi^2} J \frac{1}{Q^2 - m_\pi^2} J \frac{1}{Q^2 - m_A^2} + \cdots$$

$$= \frac{1}{Q^2 - m_A^2 - J\frac{1}{Q^2 - m_\pi^2}J} = \frac{Q^2 - m_\pi}{(Q^2 - m_A^2)(Q^2 - m_\pi^2) - J^2}$$

Q ... final pion (pseudo-scalar meson) $Q^2 = m_\pi^2$

 P_{μ}

if
$$J(Q^2=m_{\pi}^2) \neq 0 \dots \rightarrow \text{propagator} = 0$$

if $J(Q^2=m_{\pi}^2) = 0 \dots \rightarrow \text{amplitude} = 0 \rightarrow \text{null contribution}$

null contributions from a_1 - π mixing

熱油 28 Feb. 2009 ストレンジネス研究会 の

contributing diagrams (taken into account in this work)

<u>どちらを計算すべきか</u>

- 1. dynamical に生成された共鳴状態という観点からすれば、両者は同一のもの(のはず)。
- 2. set ① は、explicitに、gauge invariance が見えない。 (このまま計算すると gauge invariant ではない。)
- 3. type-(D) は発散する。

gauge invariant set (2) $A^+ \rightarrow \gamma P^+$

		$a_1^+(1260) \rightarrow \pi^+ \gamma$	$b_1^+(1235) \rightarrow \pi^+ \gamma$
type-(B)	K*K	14	26
	ρπ	119	
	total	171	26
type-(C)	K*K	30	57
	ρπ	213	
	total	373	57
TOTAL		103	159
anomalous		217	44
TOTAL + anomalous		133 <u>+</u> 70	209 <u>+</u> 90
experimental value		640 <u>+</u> 246 [1]	230 ± 60 [2]
Rosner, PI D23	quark model 3(1981)1127	1.0 ~ 1.6 MeV	184 <u>+</u> 30 keV

with anomalous coupling VVP

B.Collick et al., PRL53 (1984) 2734.
 M.Zielinski et al., PRL52 (1984) 1195.

effective Lagrangian Roca et al., PRD70(04)094006

320 ~ 470 keV

19 ~ 36 keV

discussions : $a_1(1260)$ meson について

- 今のformalismでは実験値の 1/3~1/4 しか再現できない。
 - » anomalous contribution を入れなければ 1/5 程度。
- 原因は?

(1) もっと高次(?) が必要 ? $\mathcal{L} = g A_{\mu} V^{\mu} P$

- (2) Chiral Unitary approach での記述がよろしくない?
 - → 導出されるシリーズの一員である K₁(1270) の two pole picture によって、 K⁻p → K⁻π⁺π⁺p 実験data (ACCMOR Collaboration) は非常によく再現されている。[PDG, L.S.Geng, E.Oset, L.Roca, J.A.Oller, PRD75(07)014017.]
- (3) quark component(?) からの寄与が大きい?
 - › ハドロン分子の要素が少ない or core (?) からの光崩壊への寄与が大きい。
 - pole analysis の観点からすれば、*a*₁ は殆ど dynamical component [T. Hyodo, D. Jido, A. Hosaka, PRC78(08)025203.]
- (4) *a*₁ meson は、extended hidden gauge symmetry Lagrangian に explicit field として導入され うる。[M.Bando, T.Kugo, K. Yamawaki, PR164(88)217 他] そこでは、lowest で

ストレンジネス研究会

2009

Feb.

summary :

- カイラルユニタリ模型を基礎として、axial vector の光崩壊幅の計算を行った。
 - » axial vectors ... dynamical generated resonance b₁(1235), a₁(1260), h₁(1170), h₁(1380), f₁(1285), two K₁(1270)s
 - » A→VP coupling は、その相対符号も含めてUnitary模型から決まる。
- b₁は良い一致。a₁は実験値の 1/3-1/4程度。
 - » 思案中・・。
- 様々な channel の non-trivial な干渉の効果が重要。
- hidden formalism でベクトル粒子を記述。
 - » "photon が入っている",及び "dynamical generated object"の場合、注意。
 - › double counting の問題。独立な diagram の選定。
- a₁に関しては、anomalous VVP coupling からの寄与がより大きい。
 - > 相殺してしまうけど。

Future work

- 実験値に足りない計算結果。
- extended hidden formalism により explicit に導入される a1中間子との関係。
- Chiral Unitary Approach で求められる 共鳴と基本粒子との coupling の詳細な形
 - » f₀(1370) → γγ: "tree" diagram ≠ gauge inv. [f₀(1370) (ρ-ρ composite)-ρρ vertex] [vector が含まれる場合特に Lorenz の足の構造]

数街

0

ス研究会

₹ *

2

ЧK

2009

Feb.