<u>中間子交換模型によるKbarN相互作用</u>

佐々木 健志

Nara Women's University

Contents

× Properties of $\Lambda(1405)$ state

★ Meson exchange K^{bar} N potential

× Comparison with the chiral amplitudes

× Energy dependence of the potential

× Conclusion

According to the PDG

∧(1405) S ₀₁	$I(J^P) = 0(\frac{1}{2}^-)$	$ar{K}N$ 1435 MeV $\Lambda(1405)$
Mass $m = 1406 \pm$ Full width $\Gamma = 50$ Below $\overline{K}N$ th	4 MeV ± 2 MeV reshold	πΣ 1331 MeV
A(1405) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Sigma \pi$	100 %	157
WM. Yao <i>et al.</i> (Particle Data Ground Most-established resonance v The $\Lambda(1405)$ can be observed in the $(\Sigma \pi)^0$ subsystem in final Theoretical interpretation ??? Ouark model fails to reproduce	oup), J. Phys. G 33 , 1 (2006) (URL: with four-stars in PDG directly only as a resonance 1 states of production experi-	http://pdg.lbl.gov) bump ments.
3q state, meson-baryon s	ystem, two pole ?	$\frac{110171(1520)}{1300}$

According to the PDG

Mass	m = 1406	$\pm 4 \text{ MeV}$	$\bar{K}N$ 1435 MeV $\Lambda(1405)$
Full w	V idth $\Gamma = 50 \pm 2 \text{ MeV}$ Below $\overline{K}N$ threshold		$\pi\Sigma$ 1331 MeV
A(1405) DECAY MO	DDES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Sigma \pi$		100 %	157

W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006) (URL: http://pdg.lbl.gov)

Most-established resonance with four-stars rating by PDG

The $\Lambda(1405)$ can be observed directly only as a resonance bump in the $(\Sigma \pi)^0$ subsystem in final states of production experiments.

Experimental view of $\Lambda(1405)$

by the meson-baryon terms in the wavefunctions. 1320 1340 1360 1380 1400 1420 1440 1460

c.m. Energy (MeV)

Juelich K^{bar} N interaction

The Juelich K^{bar} N interaction

A.Muller-Groeling-NPA513(1990)557 (R.Buttgen-NPA506(1990)586)

➔ Meson (hadron) exchange model

 \rightarrow K^{bar}N, πΣ, πΛ channels are considered (Coupled channel approach)

Diagrams

Main contribution comes from the vector meson exchange

The Juelich K^{bar} N interaction

Hamiltonians for meson-baryon couplings Flavor SU(3) symmetry is assumed

$$\begin{aligned}
\mathscr{L}_{BBS} &= g_{BBS} \bar{\psi}_{B}(x) \psi_{B}(x) \phi_{S}(x) , & Determined by baryon-baryon scattering \\
\mathscr{L}_{BBP} &= g_{BBP} \bar{\psi}_{B}(x) i \gamma^{5} \psi_{B}(x) \phi_{P}(x) , \\
\mathscr{L}_{BDP} &= \frac{g_{BDP}}{m_{P}} \left(\bar{\psi}_{D\mu}(x) \psi_{B}(x) + \bar{\psi}_{B}(x) \psi_{D\mu}(x) \right) \partial^{\mu} \phi_{P}(x) , \\
\mathscr{L}_{BDV} &= \frac{g_{BDV}}{m_{V}} i \left(\bar{\psi}_{D\nu}(x) \gamma^{5} \gamma_{\mu} \psi_{B}(x) - \bar{\psi}_{B}(x) \gamma^{5} \gamma_{\mu} \psi_{D\nu}(x) \right) \left(\partial^{\mu} \phi_{V}^{\nu}(x) - \partial^{\nu} \phi_{V}^{\mu}(x) \right) , \\
\mathscr{L}_{BBV} &= g_{BBV} \bar{\psi}_{B}(x) \gamma_{\mu} \psi_{B}(x) \phi_{V}^{\mu}(x) + \frac{f_{BBV}}{4m_{N}} \bar{\psi}_{B}(x) \sigma_{\mu\nu} \psi_{B}(x) \left(\partial^{\mu} \phi_{V}^{\nu}(x) - \partial^{\nu} \phi_{V}^{\mu}(x) \right) , \end{aligned}$$

Hamiltonians for meson-meson couplings

$$\mathcal{L}_{PPS} = g_{PPS} m_{P} \phi_{P}(x) \phi_{P}(x) \phi_{S}(x) ,$$

$$\mathcal{L}_{PPV} = g_{PPV} \phi_{P}(x) \partial_{\mu} \phi_{P}(x) \phi_{V}^{\mu}(x) ,$$

$$\mathcal{L}_{VVP} = \frac{g_{VVP}}{m_{V}} i \varepsilon_{\mu\nu\tau\delta} \partial^{\mu} \phi_{V}^{\nu}(x) \partial^{\tau} \phi_{V}^{\delta}(x) \phi_{P}(x)$$

Parameters are determined by KN scattering

The Juelich K^{bar} N interaction

Phenomenological K^{bar} N potential

Y. Akaishi and T. Yamazaki, PRC52(2002)044005

<u>Phenomenological AY potential</u>

Ansatz The $\Lambda(1405)$ resonance state is the I= 0 1s bound state of K^{bar} N

Regarding

- 1. 1s level shift of kaonic hydrogen atom
- 2. Martin's K^{bar} N scattering lengths
- 3. Binding energy and width of $\Lambda(1405)$

 $a_{K^-p} = (-0.78 \pm 0.15) + i (0.49 \pm 0.28) \text{ fm},$ $a^{I=0} = (-1.70 \pm 0.07) + i (0.68 \pm 0.04) \text{ fm},$ $a^{I=1} = (0.37 \pm 0.09) + i (0.60 \pm 0.07) \text{ fm},$

Various kaonic nuclear states with large binding energy and high density

Y. Akaishi and T. Yamazaki, PRC52(2002)044005

<u>Phenomenological AY potential</u>

Chiral effective theory

Chiral effective theory

D. Jido *et al* NPA725(2003)181 T. Hyodo-PRC77(2008)035204

Seagull (Tomozawa-Weinberg) term from chiral effective lagrangian

$$V_{ij}(\sqrt{s}) = -\frac{C_{ij}}{4f^2}(2\sqrt{s} - M_i - M_j)\sqrt{\frac{E_i + M_i}{2M_i}}\sqrt{\frac{E_j + M_j}{2M_j}},$$

T-matrix is solved algebraically(on-shell treatment)

Choice of decay constant f and regularization mass in the loop function G

$$T = \frac{1}{1 - VG}V$$

Evidence of meson-baryon state with natural subtraction constant

<u>Chiral effective theory</u>

Cross sections

Invariant mass distribution

Consistent with experimental data

Roles of vector meson exchange potential

<u>Vector meson exchange potentials</u>

<u>Vector meson exchange potentials</u>

Κ

π

PPV couplings Coupling constants of PPV vertex $L_{ppv} = g Tr \left[V^{\mu} \left[P, \partial_{\mu} P \right] \right]$ Empirical $\rho \rightarrow \pi \pi$ decay width and SU(3) **BBV** couplings

Coupling constants of BBV vertex

The f and g are taken from the Bonn potential

$$V^{th} = \frac{C}{f^2}$$

$$V^{th} = \frac{g_1 g_2}{m^2}$$

Threshold behaviors

		Vector meson	T-W	ratio
KN to KN	I=0	-0.839	-0.750	1.119
	I=1	-0.270	-0.250	1.081
KN to $\pi\Sigma$	I=0	0.264	0.306	0.862
	I=1	0.213	0.250	0.852
KN to $\pi\Lambda$	I=1	0.261	0.306	0.851
$\pi\Sigma$ to $\pi\Sigma$	I=0	-1.153	-1.000	1.153
	I=1	-0.569	-0.500	1.138

Deviation from SU(3) value of $K^* \rightarrow K\pi$ decay constant

KSRF relation:
$$m_V^2 = 2 f^2 g_V^2$$
 $\frac{g_{\pi KK^*}^2}{g_{K\overline{K}\rho}^2} = \frac{m_{K^*}^2}{m_{\rho}^2}$

Effect of form-factor ?

$$F(q^{2}) = \frac{\Lambda^{2} - m^{2}}{\Lambda^{2} + q^{2}}$$

$$F(q^{2}) = \frac{\Lambda^{2}}{\Lambda^{2} + q^{2}}$$

$$F(q^{2}) = \exp\left(\frac{\pi}{\Lambda^{2} + q^{2}}\right)$$

$$F(q^{2}) = \exp\left(\frac{\pi}{\Lambda^{2} + q^{2}}\right)$$

<u>Vector meson exchange potentials</u>

Results of the vector meson exchange

Scattering cross sections compared with chiral unitary calculations

Comparison with the Julich K^{bar} N interaction

Cross sections

<u>Comparison with the chiral effective theory</u>

Cross sections

Results of the vector meson exchange

× The KSRF corrected coupling constants are used in calculation × Cutoff parameters are : $\Lambda_{NS} = 1.5 \text{GeV}$, $\Lambda_{S} = 2.2 \text{GeV}$

<u>Results of the vector meson exchange</u>

× The KSRF corrected coupling constants are used in calculation × Cutoff parameters are Λ_{NS} =1.5GeV and Λ_{S} =2.2GeV.

This model is similar to the chiral unitary model

Scattering lengths are reproduced fairly well

 $a^{I=0} = (-1.70 \pm 0.07) + i (0.68 \pm 0.04)$ fm,

 $= (0.37 \pm 0.09) + i(0.60 \pm 0.07)$ fm,

Invariant mass plot

Energy dependence of K^{bar} N potential

General form of vector meson exchange potential

The t-matrix for the meson-baryon scattering

$$T_{fi} = \frac{1}{2\sqrt{\omega'\omega}} \sqrt{\frac{M'}{E'} \frac{M}{E}} \bar{u}_{s'}(p') \left[A(s,t,u) + \frac{q! + q'}{2} B(s,t,u) \right] u_s(p)$$
$$T_{fi} = \chi^{\dagger}_{s'} \left[F + \hat{\mathbf{p}}' \cdot \hat{\mathbf{p}} G + i\sigma \cdot (\hat{\mathbf{p}}' \times \cdot \hat{\mathbf{p}}) G \right] \chi_s$$
Central potential (spin independent) L-S potential (spin dependent)

$$F = \sqrt{\frac{E' + M'}{4\omega' E'}} \sqrt{\frac{E + M}{4\omega E}} \left[A(s, t, u) + \frac{2\sqrt{s} - M' - M}{2} B(s, t, u) \right]$$
$$G = \sqrt{\frac{E' - M'}{4\omega' E'}} \sqrt{\frac{E - M}{4\omega E}} \left[-A(s, t, u) + \frac{2\sqrt{s} + M' + M}{2} B(s, t, u) \right]$$

The functions, A and B, for the vector meson exchange are $A(s,t,u) = \frac{g_V}{t-m_V^2} \frac{J_V}{2\mathcal{M}} (s-u)$ $B(s,t,u) = -\frac{2g_V'}{t-m_V^2} \left(g_V + \frac{M'+M}{2\mathcal{M}}f_V\right)$

Form of vector meson exchange potential

Options of momentum configurations

Further transformation

Nonlocal and energy dependent potential

$$V_c^V({\bf q},{\bf k}) = \frac{g_V'}{{\bf q}^2 + m_V^2} \left[g_V + \frac{g_V}{\bar\omega \bar M} {\bf k}^2 - \frac{g_V + 2f_V}{8 \bar M^2} {\bf q}^2 \right].$$

This term gives rise to the energy dependence and the nonlocality of the potential.

$$k^{2} = \frac{\mathbf{p}_{f}^{2} + \mathbf{p}_{i}^{2}}{2} - \frac{\mathbf{q}^{2}}{4}$$
Momentum dependent interaction
Modified local potential
$$\tilde{V}_{c}^{V}(\mathbf{q}) = \frac{g'_{V}g_{V}}{\mathbf{q}^{2} + m_{V}^{2}} \left[1 - \left(1 + 2\frac{f_{V}}{g_{V}} + 2\frac{\bar{M}}{\bar{\omega}} \right) \frac{\mathbf{q}^{2}}{8\bar{M}^{2}} \right].$$

Potential shape in K^{bar} N I=0 and I=1 channels

Energy dependence is small in diagonal channel

Potential shape in $\pi\Sigma$ I=0 and I=1 channels

No bound state

No bound state

Short range repulsion is generated by tensor coupling part

Energy dependence would be large in $\pi\Sigma$ channel

Potential shape in K^{bar} N (I=0) channel

Potential range could be important than the energy dependence

Is the vec

Is the vector dominance ansatz proper?

<u>Conclusions</u>

- I have investigated the K^{bar} N system by a vector meson exchange process assuming the vector dominance ansatz.
- I have constructed the meson exchange potential consistent with the Tomozawa-Weinberg term.
 - Vector meson exchange generates a strong attraction in the I=0 K^{bar} N channel.
 - The vector meson exchange potential plays an important role to generate a $\Lambda(1405)$ resonance bump.
 - ¿ Energy dependence of this potential is not so large.
 - ¿ The πΣ resonance pole is not necessary.
- This model has ambiguities as follows.
 - ¿ Tensor couplings for the meson-baryon vertices.
 - ¿ Cutoff parameters dependence for the vertices.
 - ¿ Strengths of scalar meson exchange contributions.

Scalar K^{bar} N potential

The Julich K N and K^{bar} N interactions

R. Buttgen NPA506(1990)586 A. Muller-Groeling NPA513(1990)557

- The V is constructed by relatively lower-order diagrams.
- The scalar coupling is adjusted by the empirical data.

Model

- Phenomenological short-ranged repulsion (σ_0) is needed mixture of positive and negative G-parity parts
- This interaction model predicts the $\Lambda(1405)$ to be a quasibound KN state without an additional pole graph around 1.4 GeV.

The roles of the scalar potential ?

 $\Lambda(1405)$ mass spectrum

<u>Scalar K^{bar} N potential by correlated two meson</u>

What is the repulsive interaction in the scalar channel?

Method

Triangle scalar loop contribution

 $\frac{\text{Meson-baryon (Octet) interaction}}{\mathcal{L}^B} = \frac{D+F}{\sqrt{2}f_{\pi}} \langle \bar{B}\gamma_5\gamma^{\mu}\partial_{\mu}\Phi B \rangle + \frac{D-F}{\sqrt{2}f_{\pi}} \langle \bar{B}\gamma_5\gamma^{\mu}B\partial_{\mu}\Phi \rangle$

Meson-baryon (Decuplet) interaction

$\frac{Unitarized two meson amplitude}{Chiral Lagrangean for meson-meson interaction}$ $\mathcal{L}_{2} = \frac{1}{6f_{\pi}^{2}} \langle \Phi \partial_{\mu} \Phi \Phi \partial_{\mu} \Phi - \Phi \Phi \partial_{\mu} \Phi \partial_{\mu} \Phi \rangle + \frac{1}{12f_{\pi}^{2}} \langle M \Phi^{4} \rangle$ $Tree \ level \ amplitudes \ of meson-meson \ scattering$ $\pi, \mathbf{K} = \mathbf{x}, \mathbf{K} \quad \mathbf{t}_{K\overline{K} \to K\overline{K}}^{(I=0)}(q^{2}) = -\frac{3q^{2}}{4f_{\pi}^{2}}, \quad t_{\pi\pi \to K\overline{K}}^{(I=0)}(q^{2}) = -\frac{\sqrt{3}q^{2}}{4f_{\pi}^{2}}$

Unitarization procedure

J A Oller and E Oset, Nucl Phys A620 (1997) 438 J A Oller E Oset and J R Pelaez Phys Rev D59 (1999) 074001

$$T = V + VGT = \frac{1}{1 - VG}V$$

The G is the meson-meson loop function $G(s) = \int_{0}^{q_{\text{max}}} \frac{q^{2} dq}{(2\pi)^{2}} \frac{\omega_{1} + \omega_{2}}{\omega_{1}\omega_{2}[s - (\omega_{1} + \omega_{2})^{2} + i\epsilon]}$ $q_{\text{max}} = 1.0 \text{GeV}$

(The off-shell part of interaction is renormalized to the physical values.)

Scalar K^{bar} N potential

The σ_0 state is composed of a mixture of about 60% positive and 40% negative *G*-parity state.

<u>Results</u>

- X A peak structure has been found around 700 MeV in all potential model.
- X The kaonic-loop contribution can not be neglected to seek the accurate K^{bar}N potential
- X The total potential is consistent with the Julich scalar potential without a region of small momentum transfer.
- X The scalar potential has moderate attraction at the long range and strong repulsion at the short range region for both the pionic and full potential.

Summaries and conclusions

- The dynamical two-meson exchange potential between a kaon and a nucleon has been calculated by means of chiral unitary method.
- This potential should have a positive G-parity due to the intermediate two-pion state in the unitarized chiral two-meson amplitude.
- The kaonic loop contribution is not negligible especially at high momentum transfer or in the short range region.
- The full calculation result of the potential has a similar *q* behavior to the Julich scalar potential except for its strength at the threshold.
- This potential has a similar short-ranged repulsion which is assigned to the σ_0 exchange contribution by the Julich group.
- This is a candidate of the short-ranged repulsion which was needed to reproduce the empirical KN scattering data at high energy.

Reproduction of AY scattering amplitude

Similar K^{bar} N scattering amplitude is reproduced by meson exchange model

Summary

	Phenomenological pot.	Chiral theory	Hadron exchange
Local or non-local	Local	Local	Non local
Energy dependence	Off	On	On
Scattering length (threshold bahavior)	ОК	ОК	ОК
Total cross section	NO	ОК	ОК
Mass spectrum	<i>OK(?)</i>	ОК	ОК
B.E. of Λ*	-27MeV	-15MeV	?

Phase shift of K^{bar} N scattering

Chiral effective theory

Construction of single channel potential

Comparison

Scattering amplitudes of chiral effective theory and phenomenological model

-Energy dependence

Imaginary part of I=0 scattering amplitude

-Position of $\Lambda(1405)$

Around 1400MeV or 1420MeV?

-At the threshold, both models agree with the empirical data.

<u>Summary</u>

	Phenomenological pot.	Chiral theory
Local or non-local	Local	Local
Energy dependence	Off	On
Scattering length	ОК	ОК
Total cross section	NO	ОК
Mass spectrum	<i>OK(?)</i>	ОК
B.E. of Λ*	-27MeV	-15MeV

Check the validity of two pole prediction for $\Lambda(1405)!!$

Questions of K^{bar} N potential

-Coupled channel or single channel projection

 $\Sigma\pi$ channel effect to the K^{bar} N channel

Validity of complex potential

-Importance of energy dependence

Small energy dependence ?

-Local or non-local potential?

Resonance and non-locality

-Strength of scalar repulsion

-Interpretation of $\Lambda(1405)$

Binding energy of the kaon ??? Single pole or two pole ???

Few body calc. in our group Coupled channel : possible Energy dependent potential : possible Non-local potential : possible

Realistic potential

Summaries and conclusions

- I have calculated the correlated two-meson exchange potential for K^{bar} N system.
- In my estimation the correlated two meson potential generates a strong repulsion at the short range region.
- This is a candidate of the short-ranged repulsion which was needed to reproduce the empirical KN scattering data at high energy.

Future plans

- Other contributions to the scalar channel
- What about the negative G-parity part ?
- Construction of the K^{bar} N potential by the hadron exchange picture

Cutoff dependence of meson exchange potential