Requests to theorists from experimentalists

Dept. of Physics, Tohoku University H. Tamura

Experimental status and plans

Experimental plans (2009~2019)

- Λ hypernuclear structure
 - (e,e'K⁺): A=7~89, ∆E = 400 keV (FWHM)
 - γ spectroscopy: A=4~208, B(M1), B(E2), n-rich,...
 - (π⁻,K⁺) n-rich: ⁶_ΛH, ⁹_ΛHe, ...
 - High-resolution (π[±],K⁺)
 - HI induced reaction: p-rich/n-rich
 - Ξ hypernuclear spectroscopy: U_E, W_E, Ξ N- $\Lambda\Lambda$ mixing
- $\Lambda\Lambda$ hypernuclei: $B_{\Lambda\Lambda}$ and decay
- E atomic X-rays
- Σ hypernuclei/ Σ-nuclear systems
- Weak decays

AN, ΣN, (Ξ N) scattering

<u>Present Status of</u> <u>Λ Hypernuclear Spectroscopy</u>

Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.

J-PARCでのガンマ線分光のテーマ(例)

J-PARC E13

swelling?

- AN 相互作用の詳細 (E13)
 - Charge symmetry breaking ⁴_AHe(1⁺-0⁺)
 - ΛN スピン依存相互作用と ΛNN force ${}^{10}_{\Lambda}B$ and ${}^{11}_{\Lambda}B$
 - ΛN 相互作用の動径依存性 ¹⁹^ΛF
- B(M1) 測定 -> 核内Λのg因子の変化 ⁷_ΛLi

■ B(E2) 測定

- ${}^{9}_{\Lambda}$ Be and ${}^{13}_{\Lambda}$ C \rightarrow 8 Be, 12 Cのクラスター構造とAによるその変化
- $^{7}_{\Lambda}$ He \rightarrow ⁶Heの中性子ハローの消失
- sd-殻ハイパー核
 →変形、集団運動の変化

■ 重いΛハイパー核 ⁸⁹[^]Y, ²⁰⁸[^]Pb, etc. → Λ核ポテンシャルの詳細、核内深部のバリオンの性質 (s_A-p_A energy, p_A LS splitting, B(M1))

Interaction Parameters (Millener)

<u>Millener's approach for $\Lambda N-\Sigma N$ coupling</u>

Millener, Lecture Notes in Physics 724, Springer (2007) p.31

Spin-spin strength (Δ) and Λ - Σ coupling (Millener)

核内バリオンの磁気モーメント カイラル対称性の部分的回復の影響を受けるか? → バリオンのスピンの起源、質量の起源と深く関連 核内 μ, -> バリオンの核媒質効果をみる 直接測定は極めて困難 (τ~0.1--0.2 ns) Λ-spin-flip M1 遷移のB(M1) -> q、 $B(M1) = (2J_{up} + 1)^{-1} | \langle \Psi_{low} || \mu || \Psi_{up} \rangle |^2$ = $(2J_{up} + 1)^{-1} |\langle \psi_{\Lambda\downarrow} \psi_c || \mu || \psi_{\Lambda\uparrow} \psi_c \rangle|^2$ $\mu = g_C J_C + g_A J_A = g_C J + (g_A - g_C) J_A$ $= \frac{3}{8\pi} \frac{2J_{low} + 1}{2J_{c} + 1} (g_{\Lambda} - g_{c})^{2} \quad [\mu_{N}^{2}]$ ~100% **Doppler Shift Attenuation Method :** $\Gamma = BR / \tau = \frac{16\pi}{9} E_{\gamma}^{3} B(M1)$ Applied to "hypernuclear shrinkage" in ⁷_ALi from B(E2): PRL 86 ('01)1982

 $\Psi_{\Lambda} \psi_{c}$

in ⁷_ALi from B(E2) : *PRL 86 ('01)1982*

Preliminary data on B(M1) in ⁷ Li (BNL E930)

¹⁰B (K⁻, π^-) ¹⁰_AB^{*}, ¹⁰_AB^{*}(3⁺) -> ⁷_ALi^{*}(3/2⁺) + ³He indirect population

Impurity effect in deformation (Hagino)

Myaing Thi Win and K.H., PRC78('08)054311

Requests to theorists

<u>Λ hypernuclear structure</u>

• Need for shell-model description better than Millener's $(s^4 p^{A-5} s_A)$

- Need for larger shell model space and better core wave functions
- Distinguish effects of 2B and 3B interactions from $\Lambda N-\Sigma N$?
- (The 2-body $\Lambda N-\Sigma N$ coupling force is incorporated in the effective ΛN interaction. Double counting?)
- Effect of ΛN-ΣN coupling with s⁴ nucleons ?
 Important (Nemura et al. PRL 89 (2002) 142504) but incorporated in 2BF?
- Relation between BB interaction models and the parameters
- Need for Few-body calc. with $\Lambda\Sigma$ coupling for p-shell ($^{7}_{\Lambda}$ Li, $^{10}_{\Lambda}$ B , $^{11}_{\Lambda}$ B)
 - Cluster model calculations with $\Lambda N-\Sigma N$ coupling
 - Ab initio calculation (Quantum Monte Carlo...) possible?
 - Extract contributions of p-wave force
 - Inclusion of tensor force (for p1/2 shell hypernuclei?)
- Radial dependence of ΛN int. from sd-shell structure?
- How to extract info. on *\Lambda*NN force from n-rich hypernuclei?
- Collective motion in sd shell hypernuclei (mean-field approach)

Other issues in Λ hypernuclei

- B(M1) for $^{7}_{\Lambda}$ Li
 - Effect of "core polarization"
 - Effects of meson exchange current and Σ mixing
 - Effect of partial restoration of chiral symmetry
 - ¹²_ΛC and other hypernuclei
- Charge Symmetry Breaking (どちらかというと実験待ち)
 - ${}^{4}_{\Lambda}H {}^{4}_{\Lambda}He$ with recent BB interactions
 - A=7, A=12(e,e'K⁺) data (will be) available.
- Medium/Heavy hypernuclei
 - **B**_{Λ}, m^{*}_{Λ}, s_{Λ}-p_{Λ} in heavy hypernuclei -> then what can we see?
 - How LS splitting appears in large A ?
 - B(M1) in heavy hypernuclei

Weak decays

- Asymmetry puzzle solved? μ can be measured?
- ΛNN -> NNN: What is new? (Bhang)
- Direct quark process unnecessary in NMWD?
 What is the unified picture of BB interaction?
- $\Delta I = 1/2$ rule (${}^{4}_{\Lambda}H$, ${}^{4}_{\Lambda}He exp.$) (Ajimura)
- π⁺ decay should be measured?
- ΛΛ -> ΣΝ, ΛΝ decay: How is the relation to H-dibaryon correlation in nucleus?
- Semi-leptonic decay $\Lambda \rightarrow p e^{-} v_{bar}$, $\Lambda \rightarrow p \mu^{-} v_{bar}$ BR~10⁻³
 - Possible change of baryon property How sensitive to wave function of s/u quark in nucleus? (Also sensitive to Pauli effect...)

実験施設充実のために必要な検討

- K1.1 ライン (補正でできるかも) for (K⁻, π⁻)
 - ガンマ線分光(sd-shell, medium-heavy)
 -> 集団運動の不純物効果、核内∆の性質変化

どれくらいの効果が期待できるか? ポテンシャルの詳細と核内Aの性質変化の関係は?

- ΣN , ΛN scattering 測定精度と相互作用模型の判別性は?
- 少数系Σ核 -> ΣN相互作用の(T,S)ごとの強さ
 どれくらいの精度で強さが決まるのか?
- Θ核, weak decay, …

High-Resolution pion line (Noumi line)

20億円 +ホール拡張(80億円)

(π[±],K⁺) 高分解能(~200 keV FWHM) 分光

 → (中重)Λ核、中性子過剰Λ核、Σ核、(weak decay)
 何がどこまでわかるのか?
 インパクトは?
 他に使い道は?

G-matrix results for various interactions

TABLE XIV. Contributions to U_{Σ} at $k_F = 1.0$ fm⁻¹ in the cases of NSC97e, NSC97f, NSC89, NHC-F, and NHC-D. Conversion widths Γ_{Σ} are also shown. All entries are in MeV.

Isospin $T = \frac{1}{2}$ Isospin $T = \frac{3}{2}$								
Model	${}^{1}S_{0}$	${}^{3}S_{1}$	Р	¹ S ₀	${}^{3}S_{1}$	Р	Sum	Γ_{Σ}
NSC97e	5.2	-7.5	0.0	-6.1	-2.5	-0.9	-11.8	14.6
NSC97f	5.2	-7.6	0.0	-6.2	-2.2	-0.9	-11.6	15.5
NSC89	3.0	-4.2	-0.3	-5.8	3.7	0.1	-3.6	25.0
NHC-F	4.2	-10.9	-1.5	-5.3	18.6	-1.7	3.5	16.3 Diikan Vamamata
NHC-D	2.1	-9.6	-2.2	-5.4	9.4	-3.0	-8.7	8.7 PRC73 (2006) 044008
ESC04d	6.5	-21.0	-3.4	-20.2	24.0	-20.9	-26.0	Fujiwara et al.,
fss2(quark)	6.7	-23.9	-5.2	-9.2	41.2	-1.4	7.5	58 (2007) 439
Э-								k _f =1.35 fm ⁻¹

quark Pauli effect Lane term $(\sigma_{\Sigma}\sigma_{N})(\tau_{\Sigma}\tau_{N})$ by π/ρ exchange

Previous ³He(K⁻,π⁻) data at BNL E774

Counts/2 MeV

R.S. Hayano / ⁴He (K^{-}, π^{\pm}) experiments at KEK and BNL

155c

Fig. 2 Missing Mass Spectrum as in fig. 1 but with multiplicity 2 cut.

^{plicity 2} Top: ⁴He(K^-, π^-) data tagged with the multiplicity ≥ 2 condition (same as om-left). Bottom: ³He(K^-, π^-) spectra. Inclusive data are in open circles and multiplicity-tagged data are in crosses.

Proposed ³He experiment

- ³He (K⁻,π^{±,0} Λ) at threshold, p_K~0.5~0.6 GeV/c (q < 50 MeV/c)</p>
- ${}^{3}{}_{\Sigma}$ He, ${}^{3}{}_{\Sigma}$ H, ${}^{3}{}_{\Sigma}$ n : different combination of (T_{NΣ}, S_{NΣ}) = (3/2,1), (3/2,0), (1/2,1), (3/2,0) from ${}^{4}{}_{\Sigma}$ He, ${}^{4}{}_{\Sigma}$ n
- 3-body systems can be accurately calculated

 -> direct comparison with various interactions
 (how sensitive? theoretical calculations essential)
- Apparatus: Low momentum beam line (K1.1BR)
 - + beam spectrometer + SPESII and π^0 spectrometer + Λ tagger (CDS)

Koike-Harada (NPA611(1996)461) "Unstable bound states" $E_{\Sigma}(\Gamma)$ SAP-1(ND)SAP-F(NF) $^{3}_{\Sigma}$ He (T=1,S=1/2)---+1.77 (7.58) MeV $^{3}_{\Sigma0}$ H (T~1,S=1/2)+0.01 (1.95)+0.63 (8.2) MeV $^{3}_{\Sigma}$ n (T=1,S=1/2)---+0.55 (9.05) MeVSpectral shapes should be calculated.

Experiment

- Beam spectrometer (∆p_{FWHM} <1.5 MeV/c at 600 MeV/c) in place of K1.1BR B3
- 3He target
- A tagger => CDS
- π[±] spectrometer (Δp_{FWHM} <1.5 MeV/c at 500 MeV/c)
 => SPESII
- π^0 spectrometer ($\Delta p_{FWHM} \sim 3$ MeV/c at 500 MeV/c)
- Yield (K⁻, π^{\pm}): N_{K-}·dσ/dΩ·ΔΩ·N_{target}·ε(Λtag) ·ε
- = 5x10⁵/spill·50x10⁻³⁰cm²/sr·0.02sr·0.09g/cm³/ 3·10cm· 6x10²³·0.3· 0.5

=> 1400 counts/100hours ->Lower beam momentum?

- Yield (K⁻, π^{±0}):
- => ~100 counts/100hours