Hypernuclear weak decay : -- present and future problems --

K. Itonaga Gifu University

Kakenhi-kenkyukai Atami2009 Atami Feb.27-28 2009

Contents of this talk

- 1. Experimental data
- 2. Theory : Mesonic decay
- 3. Theory : Nonmesonic decay
- 4. J-PARC 実験に期待する

1 Experiment : Pi-Mesonic Weak Decay

Mesonic decay rates

Data (~2000)

Hypernucleus		Ref.
⁴ _A H	Γ_{π}^{-}	Outa(1995)
⁴ _A He	Γ_{π^0} , Γ_{π^-}	Outa(1995,1998) Zeps(1998)
⁵ ∧He	$\Gamma_{\pi^0},\Gamma_{\pi^-}$	Szymanski(1991)
⁹ _A Be	Γ_{π}	Bando(1987) ?
¹¹ _A B	$ \begin{array}{c} \Gamma_{\pi} \\ \Gamma_{\pi^{0}} \\ \Gamma_{\pi^{0}} , \Gamma_{\pi^{-}} \end{array} $	Grace(1985) Sakaguchi(1991) Noumi(1995)
¹² [^] C	$ \begin{array}{c} \Gamma_{\pi^0} , \Gamma_{\pi^-} \\ \Gamma_{\pi^0} \\ \Gamma_{\pi^0} , \Gamma_{\pi^-} \end{array} $	Szymanski(1991) Sakaguchi(1991) Noumi(1995)

Data (2000~)

Hypernucleus		Ref.
¹¹ _Λ B	Γ_{π}^{-}	Sato(2005)
	Γ_{π}^{-}	Sato(2005)
²⁸ [^] / _^ Si, ²⁷ [^] / _^ Si	Γ_{π}^{-}	Sato(2005)
лFe	Γ_{π}^{-}	Sato(2005)
⁷ _A Li	π^{-} spectra, Γ_{π}^{-}	Botta(2008)
⁹ _^ Be	π^{-} spectra, Γ_{π}^{-}	Botta(2008)
¹¹ _Λ B	π^{-} spectra, Γ_{π}^{-}	Botta(2008)
¹⁵ [^] N	π^{-} spectra, Γ_{π}^{-}	Botta(2008)

2 Experiment : Nonmesonic Weak Decay

• Decay rates, Γ_n/Γ_p , $\tau_{1/2}$

Data

Hypernucleus		Ref.
⁴ _A H	$\Gamma_{\sf nm}$	Szymanski(1991)
		Outa(1998)
⁴ _A He	Γ_{p} , Γ_{n}	Szymanski(1991) Outa(1998) Zeps(1998)
⁵ _^ He	Γ_{p}, Γ_{n}	Szymanski(1991) Noumi(1995)
¹¹ _A B	$\Gamma_{\rm nm}, \Gamma_{\rm n} / \Gamma_{\rm p}$ $\Gamma_{\rm nm}$	Szymanski(1991)Noumi(1995) Sato(2005)
¹² ^A C	$\Gamma_{\rm nm}, \Gamma_{\rm n} / \Gamma_{\rm p}$ $ au_{1/2}$	Szymanski(1991)Noumi(1995) Sato(2005) Bhang(1998)Park(2000)

5

Hypernucleus		Ref.
²⁷ ^A I	$\Gamma_{\rm nm}, \Gamma_{\rm n}/\Gamma_{\rm p}$	Sato(2005)
²⁸ Si	$\Gamma_{\rm nm}, \Gamma_{\rm n}/\Gamma_{\rm p}$	Sato(2005)
	$ au_{1/2}$	Bhang(1998) Park(2000)
γFe	$\Gamma_{\rm nm}, \Gamma_{\rm n}/\Gamma_{\rm n}$	Sato(2005)
	$ \tau_{1/2} $	Bhang(1998) Park(2000)
Λ Bi	$\tau{1/2}$	Kulessa(1998)

Data : neutron, proton Energy Spectra (N_n, N_p) n-n and n-p coincidence measurement, Γ_n/Γ_p

Hypernucleus		Ref.
⁵ _A He	N _n , N _p n-n, n-p	Okada(2004) Outa(2005) Kang(2006)
	-	
	N _n , N _p N _p n-n, n-p	Okada(2004) Kim(2003) Hashimoto(2002) Outa(2005) Kim(2006)
⁸⁹ ^Λ Y	N _n	Okada(2004) Kim(2003)

3 Theory : Mesonic weak decay

π-decay hamiltonian :

$$H_{\pi} = \left[s_{\pi} X^{(s)}(r) + i p_{\pi} X^{(p)}(r) \frac{(\vec{\sigma} \vec{\nabla})}{q_0} \right] \chi^{(-)*}(\vec{q},\vec{r})$$

$$s_{\pi 0} = -s_{\pi -}/\sqrt{2}$$

$$p_{\pi 0} = -p_{\pi -}/\sqrt{2} \quad (\Delta I = 1/2 \text{ rule})$$

$$s_{\pi -}/p_{\pi -} = -3. \quad (\text{from } \pi \text{ decay asymmetry}$$

$$\vec{\Lambda} \rightarrow p + \pi^{-}$$

$$\alpha_1^{\pi} = -0.64 \quad)$$

$$\chi^{(-)*}(\vec{q},\vec{r}) : \quad \pi\text{-on distorted wave}$$

Vertex form factor (depends on π -Optical pot.)

 $X^{(s)}(r) = 1.0$

X^(p)(r) = L(r) (LLEE for MSU pot.) Lorentz – Lorenz – Ericson – Ericson

 $\Gamma_{\pi 0}, \Gamma_{\pi -}, \pi^0/\pi^-, \Gamma_{\pi}^{\text{sum}}$

- Decay rates : sensitively depends on Hyp-structure
- Theor. Cal. → good agreement with available data
- $A=4:{}^{4}_{\Lambda}H, {}^{4}_{\Lambda}He \rightarrow \Gamma_{\pi}$'s data favor Isle-type for $V_{\Lambda-nucleus}$ pot.

• A= 15 : ${}^{15}_{\Lambda}$ N π^- -spectrum, Γ_{π^-} data (FINUDA 2008)-> cal. factor 2 small ?

- π -on asymmetry from polarized hypernuclei ${}^{A}_{\Lambda}Z(J_{i} M_{i} T_{i} \tau_{i}, P_{H}) \rightarrow {}^{A}Z'(J_{f} T_{f} \tau_{f}) + \pi(\vec{q})$
 - Angular distribution

$$\begin{split} &\Gamma_{\pi}(\mathbf{J}_{\mathbf{i}} \ \mathbf{M}_{\mathbf{i}} \ \mathbf{T}_{\mathbf{i}} \ \tau_{\mathbf{i}} \ ,\mathbf{J}_{\mathbf{f}} \ \mathbf{T}_{\mathbf{f}} \ \tau_{\mathbf{f}} \ ;\hat{\mathbf{q}}) \\ &= \sum_{\mathbf{Q}} \Gamma_{\pi}^{\mathbf{Q}}(\mathbf{J}_{\mathbf{i}} \ \mathbf{M}_{\mathbf{i}} \ \mathbf{T}_{\mathbf{i}} \ \tau_{\mathbf{i}} \ ,\mathbf{J}_{\mathbf{f}} \ \mathbf{T}_{\mathbf{f}} \ \tau_{\mathbf{f}} \ ;\mathbf{q}) \ \mathbf{P}_{\mathbf{Q}}(\hat{\mathbf{q}}) \\ &= \Gamma_{\pi}^{\mathbf{Q}=0}(\mathbf{J}_{\mathbf{i}} \ \mathbf{M}_{\mathbf{i}} \ \mathbf{T}_{\mathbf{i}} \ \tau_{\mathbf{i}} \ ,\mathbf{J}_{\mathbf{f}} \ \mathbf{T}_{\mathbf{f}} \ \tau_{\mathbf{f}} \ ;\mathbf{q}) \ (1 + \alpha_{1}\mathbf{P}_{1}(\hat{\mathbf{q}}) + \alpha_{2}\mathbf{P}(\hat{\mathbf{q}}) + \cdots) \end{split}$$

$$\alpha_{\mathbf{Q}} = \frac{\Gamma_{\pi}^{\mathbf{Q}}}{\Gamma_{\pi}^{\mathbf{Q}=0}} \qquad (\mathbf{M}_{\mathbf{i}} = \mathbf{J}_{\mathbf{i}} \ 100\% \text{ polarlized})$$

 α_1 : asymmetry parameter

π-on asymmetry

•
$${}^{5}_{\Lambda}$$
He : measured, Ajimura(1998)
Asymmetry A ^{π} = P $\alpha_1^{\pi} \epsilon$
Measured A ^{π} , ϵ : reduct.factor (=0.81)
assumed α_1^{π} = - 0.64 (free Λ val.)
 \rightarrow Deduced Polarization P
P = 0.249 +/- (θ =2-7 deg)
P = 0.393 +/- (θ =7-15 deg) < - > Consistent with
cal.
Theory (prediction) NP. A489(1988)683

$${}^{9}_{\Lambda}\mathbf{B}(1/2^{+}) , \quad \alpha_{1}^{\pi} = -0.64 \quad \text{(cal.)}$$

$${}^{13}_{\Lambda}\mathbf{C}(1/2^{+}) , \quad \alpha_{1}^{\pi} = -0.16 \quad \text{(cal.)}$$

• $\Delta I = \frac{1}{2}$ rule for $\Lambda \rightarrow N + \pi$ decay

• $\Lambda \Diamond p + \pi^{-}$ (63.9 +/- 0.5) % $\Diamond n + \pi^{0}$ (35.8 +/- 0.5) %

Rule : established empirically

 $\frac{\Gamma_{\pi}^{\exp}(\Lambda \rightarrow \mathbf{p} + \pi^{-})}{\Gamma_{\pi}^{\exp}(\Lambda \rightarrow \mathbf{n} + \pi^{0})} \cong \frac{2}{1} = \frac{(1/21/21 - 1|1/2 - 1/2)^{2}}{(1/2 - 1/210|1/2 - 1/2)^{2}}$

* Theoretical foundation, however,

not yet clarified well

* see, Hiyama et al. PTP 112(2004)99
 quark-quark correlations, (us)⁰ →(ud)⁰ considered.
 * also, Oka's group and other QCD works

4 Theory : $\Lambda N \rightarrow NN$ nonmesonic weak decay

- $\Delta S = 1$, Q = 176. MeV, q ~400 MeV/c (free Λ)
- High momentum transfer process
- Short-range part of interactions contributes
- NMWD dominant decay mode in medium-to-heavy Λ hypernuclei
- A. Nonmesonic decay interactions, V(Λ N–NN)

Models :

1 one-pion exchange, V_{π}

basic but not dominant

lightest 0⁻ meson \rightarrow long-ranged, strong tensor

→ fail to explain Γ_n/Γ_p (n/p –ratio) data

- 2 octet-meson exchanges :
 - 0^- pseudo-scalar (π , K, η) exch.
 - 1⁻ vector (ρ, K^*, ω) exch.
 - π + K : work additively for ${}^3S_1 \rightarrow {}^3P_1$,

destructively for parity-cons. channels

→ enhance the n/p ratios, which explains features of exp. data (Good !)

 \rightarrow but not enough to explain Γ_{nm}

other mesons : necessary to explain Γ_{nm} octet-meson exch. : not successful to explain asymmetry parameter α_{Λ} of $^{5}_{\Lambda}$ He, $^{12}_{\Lambda}$ C 3 correlated- 2π , uncorrelated- 2π exchanges :

 $2\pi/\sigma$: 0⁺ scalar exch.

enhance the decay rates

 $2\pi/\rho$: 1⁻ vector exch.

tensor force, opposite sign to V_{π}

correlated- 2π + uncorrelated- 2π (+ octet-mesons) :

 \rightarrow work favorably to explain α_{Λ}

(Chumillas et al. 2007)

4 Axial vector meson exchange :

a₁ : J^{π} = 1⁺, \leftarrow → chiral partner of ρ , like $\pi \leftarrow \rightarrow \sigma$ modeled as $\rho\pi/a_1$, $\sigma\pi/a_1$ –exch. (+ π , K, ω , 2 π/σ , 2 π/ρ) → work favorably for α_Λ $^{5}_{\Lambda}$ He, $^{12}_{\Lambda}$ C 5 Direct quark interaction :

short-ranged

 $\Delta I = 1/2 \& 3/2$ contributions

 $\Delta I = 3/2$ contributions, large for J = 0 trans.

Direct quark int. alone \rightarrow not enough to explain Γ_{nm} Direct quark + π + K + σ :

→ can explain α_{Λ} of ${}^{5}_{\Lambda}$ He (Sasaki et al. 2005) 6 Effective field theory :

low order effective field theory (LO pc +pv) high mom. (short-distance) modes \rightarrow contact oprator $\pi, K \rightarrow$ treated as dynamical field, long-range part \rightarrow stress, importance of scalar-isoscalar contact int.

to fit data including α_{Λ}

 ${}^5_{\Lambda}{
m He}$, ${}^{12}_{\Lambda}{
m C}$

18

B. Γ_n/Γ_p (n/p ratio)

Exp.
$${}^{5}_{\Lambda}$$
He 0.45 +/- 0.11+/- 0.03 Kang(2006)
 ${}^{12}_{\Lambda}$ C 0.56 +/- 0.12 +/-0.04 Outa(2005)
0.51 +/- 0.13 +/-0.05 Kim (2006)

Theory :

 $V\pi$ + V_K : important role to explain the large n/p ratios mechanisms:

$${}^{3}S_{1} \rightarrow {}^{3}P_{1}$$
, PV-channel (I = 1)

interference works additively

 $^{1,3}\text{S} \rightarrow ^{13}\text{S}$, $^3\text{S}_1 \rightarrow {}^3\text{D}_1$, PC-channels

interferences work destructively

(V π + V_K alone : \rightarrow not enough to explain Γ_{nm})

C. Asymmetry parameter α_1, α_Λ

Exp.
$${}^{5}_{\Lambda}$$
He 0.11 +/- 0.08+/- 0.04 Outa, Maruta(2005)
0.07 +/- 0.08 (+0.08/-0.00) Maruta(2006)
0.24 +/- 0.22 Ajimura(2000)
 ${}^{12}_{\Lambda}$ C -0.20 +/- 0.26 +/-0.04 Outa, Maruta(2005)
-0.16 +/- 0.28(+0.18/-0.00) Maruta(2006)

Theory :

1 effective field theory (Parreno, 2004,2005) $\alpha_{\Lambda}({}^{5}_{\Lambda}He)$, fitted to data Ajimura(2000) $A_{1}({}^{11}_{\Lambda}B) > 0$, exp. - 0.20 +/- 0.10 $A_{1}({}^{12}_{\Lambda}C) > 0$, exp. - 0.01 +/- 0.10 stressed : importance of scalar-isoscalar contact (short-ranged) interaction 2 σ -exchange Sasaki et al. (2005) DQ + π + K + σ -exch. \rightarrow explain $\alpha_{\Lambda}({}_{\Lambda}^{5}He)$ Barbero et al. (2006) octet-meson + σ -exch. \rightarrow not succeed to explain α_{Λ} Itonaga et al. π + $2\pi / \sigma$ + $2\pi / \rho$ + ω + K \rightarrow cannot explain α_{Λ}

- \rightarrow still controversial on σ -exchange
- 3 2π -exchange (correlated & uncorrelated) Chumillas et al. (2007) : adopted V_{2 π} by Jido et al.(2000)

Chumillas et al. (2007) octet-meson + correl.- $2\pi (2\pi / \sigma)$ + uncorrel.- $2\pi \rightarrow$ well explain α_{Λ} of $^{5}_{\Lambda}$ He & $^{12}_{\Lambda}C$ Itonaga et al. $\pi + 2\pi / \sigma + 2\pi / \rho + \omega + K \rightarrow$ cannot explain α_{Λ}

➔ still controversial

4 axial vector a₁-exchange

a₁: mass = 1230. MeV, J^π = 1⁺
a₁(1⁺) ← → ρ(1⁻), π(0⁻) ← → σ(0⁺)

new approach (?), chiral partner mesons exch.
→ compatible with available data of α_Λ

D. Problems (theory)

1 ● α_{Λ} expression differs by authors? (free Λ+ p→ n + p) W. A. Alberico, A.Ramos et al. (2005)

$$\alpha_{\Lambda} = \frac{2\sqrt{3} \operatorname{Re}\left[\operatorname{ae}^{*} - b(c - \sqrt{2}d)^{*} / \sqrt{3} + f(\sqrt{2}c + d)^{*}\right]}{\left|a\right|^{2} + \left|b\right|^{2} + 3\left[\left|c\right|^{2} + \left|d\right|^{2} + \left|e\right|^{2} + \left|f\right|^{2}\right]}$$

Sasaki, Izaki and Oka (2005)

$$\alpha_{\Lambda} = \frac{2\sqrt{3} \operatorname{Re}\left[-\operatorname{ae}^{*} - \operatorname{b}(\operatorname{c} - \sqrt{2}\operatorname{d})^{*} / \sqrt{3} + \operatorname{f}(\sqrt{2}\operatorname{c} + \operatorname{d})^{*}\right]}{\left|\operatorname{a}\right|^{2} + \left|\operatorname{b}\right|^{2} + 3\left[\left|\operatorname{c}\right|^{2} + \left|\operatorname{d}\right|^{2} + \left|\operatorname{e}\right|^{2} + \left|\operatorname{f}\right|^{2}\right]}$$

Itonaga et al.

$$\alpha_{\Lambda} = \frac{2\sqrt{3} \operatorname{Re} \left[-\operatorname{ae}^{*} + \operatorname{b}(\operatorname{c} - \sqrt{2}\operatorname{d})^{*} / \sqrt{3} + \operatorname{f}(\sqrt{2}\operatorname{c} + \operatorname{d})^{*}\right]}{\left|\operatorname{a}\right|^{2} + \left|\operatorname{b}\right|^{2} + 3\left[\left|\operatorname{c}\right|^{2} + \left|\operatorname{d}\right|^{2} + \left|\operatorname{e}\right|^{2} + \left|\operatorname{f}\right|^{2}\right]}$$

What is the origin of the difference?

2 • necessary to check the proposed mechanism (model) to explain α_Λ
• contact int.
• σ-exch. 2π/σ, uncorrelated-2π
• a₁-exch.
• direct-quark
3 • New and different approach, possible ?

• ??

strange-meson K₁(1400), J = 1⁺?

 $\leftarrow \rightarrow \mathsf{K}_1 = (\pi \ \mathsf{K}^* \) \ ?$

- role of $\Delta I = 3/2$?
- What else ?
- 4 nonmesonic decay of $_{\Lambda\Lambda}Z$ hypernuclei

0

5 J-PARC 実験に期待する

A. Mesonic Decay

1 $\Gamma_{\pi 0}$ measurement of hypernuclei

- : ${}^{7}_{\Lambda}$ Li, ${}^{9}_{\Lambda}$ Be, ${}^{11}_{\Lambda}$ B, ${}^{12}_{\Lambda}$ C, ${}^{15}_{\Lambda}$ N, ${}^{27,28}_{\Lambda}$ Si, ${}^{56}_{\Lambda}$ Fe
- * Γ_{π^-} , measured at FINUDA & Sato et al.(2005)
- * $\Gamma_{\pi 0}$ data of ${}^{12}_{\Lambda}C \rightarrow$ still large error-bar
- * high quality data <-> more informations for pion behavior or U_{π}^{opt} inside the nucleus

*
$$\left| < \phi_{\mathbf{n}\ell\mathbf{j}}^{\mathbf{N}} \right| \widetilde{\mathbf{j}}_{\ell}^{\pi} \left| \varphi_{0\mathbf{s}}^{\Lambda} > \right|^{2}$$

2 $\Gamma_{\pi-}$, $\Gamma_{\pi0}$ measurement of neutron-rich Hyp-nucl.

- $: {}^{9}_{\Lambda}$ He, ${}^{10}_{\Lambda}$ Li
- * E-10 proposal (Sakaguchi)
- * $\pi^{-}(\pi^{0})$ spectra may serve to determine the hypernuclear spin J^{π}
- 3 Measurement of decay asymmetry $\alpha_{1}{}^{\pi}$ of
 - $: {}^{9}_{\Lambda} \mathbf{Be} , {}^{13}_{\Lambda} \mathbf{C}$
 - * Theoretical prediction exists for some typical Hyp.
 - * weak decay mechanism and pion behaviors are rather well known

B. Nonmesonic Decay

- 1 Measurement of decay rates, Γ_{nm} , Γ_n/Γ_p , are desirable for p-shell and heavier Hy.
 - $: {}^{7}_{\Lambda} Li, {}^{9}_{\Lambda} Be, {}^{10}_{\Lambda} B, {}^{13}_{\Lambda} C, {}^{16}_{\Lambda} O, {}^{89}_{\Lambda} Y, {}^{209}_{\Lambda} Bi$
 - * High quality data of n/p ratios exst only for ${}_{\Lambda}^{5}$ He and ${}_{\Lambda}^{12}$ C
 - * mass-A dependence of Γ_{nm} , Γ_n/Γ_p are known \rightarrow weak decay int. range will be deduced
 - * neutron-excess (N > Z) effect on decay rats are studied

- 2 More asymmetry parameter α_{Λ} measurements are desirable
 - : ${}^{7}_{\Lambda}$ Li(1/2⁺), ${}^{13}_{\Lambda}$ C(1/2⁺), ${}^{14}_{\Lambda}$ N(1⁻)
 - * $\alpha_{\Lambda}^{\text{NM}}$'s have HY-mass (shell) dependence or not ?? $\alpha_{\Lambda}^{\text{NM}} \left({}_{\Lambda}^{5}\text{He} \right)$ and $\alpha_{\Lambda}^{\text{NM}} \left({}_{\Lambda}^{12}\text{C} \right)$ are sign different ?
 - * What is the decisive mechanisms for the small $\alpha_{\!\Lambda}^{\quad {\sf NM}} ?$
 - -- What type of the decay interactions ?
 - -- final-state interactions ?

-- effect of $\Delta I = 3/2$?

- 3 Measurement of A = 4 hypernuclei
 - $: {}^{4}_{\Lambda}\mathbf{H}, {}^{4}_{\Lambda}\mathbf{He}$

Test of
$$\Delta = 1/2$$
 rule
 $\Gamma_{nm}(^{4}_{\Lambda}H) \sim 3Rn1 + Rn0 + 2Rp0$
 $\Gamma_{nm}(^{4}_{\Lambda}He) \sim 2Rn0 + 3Rp1 + Rp0$
 $\frac{\Gamma_{n}(^{4}_{\Lambda}He)}{\Gamma_{p}(^{4}_{\Lambda}H)} = \frac{R_{n0}}{R_{p0}} = 2 \text{ (if } \Delta I = 1/2 \text{)}$

4 Measurement of decay rate of double-Λ
 hypernuclei

* $\Lambda\Lambda\,\Diamond\,n\Lambda$, $p\Sigma^{-}$, $n\Sigma^{+}$

5 Hope to explore flavor nuclei including Λ_c