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1 Introduction
1.1 What is Liouville Filed Theory?

e LFT appears in the quantization of Noncritical

string (Polyakov, DDK ...)

e Noncompact and Irrational CFT («+ difficult

to solve)

Action

1
5= / B22/G (9" 0, 0Byd + QR + 4r e
7T

Q=b+b"', c=1+6Q°

10 years ago (matrix revolution)
(BK,DS,GM...)it was found that

it is equivalent to Double Scaling Matrix

Model .

— LFT is exactly solvable?



1.2 10 years have past since then...

1. Developments of LFT itself

e 3pt function (DOZZ formula)
e brane (FZZT /ZZ brane)

2. Matrix Model reloaded (~ 2003)

e Matrix is tachyon field on D-brane
e Based on the holographic principle
e A kind of gauge/gravity correspondence

e Can be understood from VSFT

e Conncection to topological string theory...

See e.g. my review paper (hep-th/0402009).

However, bosonic (or N/ = 1) Liouville
theory has ¢ = 1 barrier. So it is not
so clear how we can apply the results to

higher dimensional string theory.



1.3 AN = 2 Liouville theory

In this talk, we consider N/ = 2 Liouville theory.

N = 2 Liouville theory is special because

it has no ¢ = 1 barrier.

Action

1
S = / d?zd*0SS" + ( / d2zd20e3° + h.c.)
v

Central charge ¢ = £ =1 + 92 (Q is background

charge: [ d?*zQRS) so there is no é = 1 barrier.

Application of N/ = 2 Liouville theory

e 2-dimensional black hole

e World sheet description of NS5-brane

e Singular CY spaces

e Branes/Orientifolds in these backgrounds

e Time-dependent physics (rolling D-brane)



Plan of my talk

1. Introduction

2. N = 2 Liouville theory

e Bulk theory (duality of N' = 2 LFT)

e Target space geometry

e Boundary states

e Crosscap states

3. Application to NS5 background

e Stable non-BPS brane (hairpin brane)
e Rolling D-brane

e Emission rate from rolling D-brane



2 N = 2 Liouville theory
2.1 Bulk theory
Action of N =2 LFT

Action

1
S =— / d’2d*'0SS"
27
S : chiral super field (D+S = 0)
S = & + 1Y with background charge for ® : O

Interaction term preserving N' = 2 SCFT

: 2. 120,55
1. Super potential (F-term): [ d*zd*6e2” + h.c.

p _ 4 By - lg
Si+ 8- = [ dzuty eQS+§¢+¢ ec”
2
—I—ﬂ-QM2 eés :eés

2. Kahler potential (D-term): fd2zd493%(S+ST)
Sne = 1 / d’z(8¢p — i8Y — Q™)
X (8 + idY — Q9 )e2?

Central charge: ¢ = =1+ Q2.



2.2 Duality of N =2 LFT
N = 2 LFT with superpotential (1) is
equivalent to the LFT with Kahler poten-
tial (2).

(Conjectured in hep-th/0210208: Ahn et. al.)
I have given some supporting arguments in hep-

th/0402009.

e N/ = 2 Liouville theory (with F-term) is
mirror dual to SL(2,R)/U (1) supercoset model
(Hori-Kapustin)

e Wakimoto screening charge of the SL(2, R)/U (1)
is nothing but D-term (upto BRST exact term).

e From the space-time perspective, F-term is
complex structure deformation, and D-term is

Kahler deformation.

e In case of K3, this is just a convention. In

general they are mirror to each other.



2.3 Target space geometry of N =2 LFT 1
Typically, NN = 2 LFT represents the

noncompact direction of the singular CY

space.

NS5-brane solution:
/

ds® = n,,dz"dz” + (1 + — ) dx™dx™,
r
/

62((1)_(1)0) — 1 _I_

Hpp = —€1  9,®

q
72 ? Gmnp

In CHS limit (near horizon limit) we can
introduce linear dilaton coordinate

2
¢ = VNa'ln il ,

No'

The target space becomes

Ry X S3| X Mn_»
AN

M, is level k N = 2 minimal model and Ry X S}

is the ' = 2 LFT (Q = +/2/N)! — Solvable!

R>' x Ry X SU(2)ny_2 &£ R>' X



2.4 Target space geometry of N' = 2 LFT 2
Like CHS background we can embed N/ = 2 LFT

into Superstring.

— radial direction of NS5 or singular CY

ADE singularity
/ / — /=

H ‘ Tdua  deformed singularity

[ID ) <> &>/

e Deformation by Super potential is resolution

of singularity from complex moduli.
2N 4224 22=0— 2N 422422 =p
e Deformation by Kahler potential is resolution
of singularity from Kaler moduli.

We can study these singular CY spaces by
studying NV = 2 LFT
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2.5 Branes/Orientifold in NV = 2 LFT

We will construct boundary/crosscap
states in N = 2 LFT from the modular

bootstrap method.

Remark 1

e Boundary states were first constructed by Eguchi-

Sugawara in hep-th/0311141.
e I constructed crosscap states in hep-th /0409039.

e Modular bootstrap is consistent with confor-

mal bootstrap method (Ahn et.al, Hosomichi...).

e The modular bootstrap method was first in-
troduced in the context of bosonic ZZ brane

(— now becomes almost standard to solve non-

compact BCFT).



2.6 Modular bootstrap 1

Philosophy of modular bootstrap method

We assume the spectrum of the open
string and solve the Cardy condition from

the ansatz.

It goes schematically as follows (T' = —1/1):

1. We first assume the existence of identity brane:
(B,0le ™™ |B, 0) = x0(it) = Tropen,0€*™*

2. Then we can solve boundary states |B, O).

3. Another overlaps are given by the general char-

acters:
(B, kleTH|B, 0) = xi(it) = Tropen ™ H

4. We have various boundary states |B, k) repre-

sented by the open string character k.

5. Finally, we should check the Cardy condition
by studying overlaps between boundary states:

(B’k|e_TH|Bak,> = Z Xf(k:,k:’)(it)
f (kK"



2.7 Modular bootstrap 2
To complete the procedure, we need to
know the modular transformation of the

N = 2 character.

For simplicity, we consider the decompactified
version of N/ = 2 LFT.

We set ¢ = €?™" and y = e?™* as usual.

(1) character of massive representation

-1 ~O0s(T, 2
Ch(NS)(ha Q; T, Z) — qh_ 8 yQ 3( : 3)
n(7)

(2) character of massless representation
1 0s(7, 2)
1+ 2@z N(7)?

(3) character of graviton (identity) representa-

Q| é—
ch(V(Q;7,2) = gz 7y

tion
E— 1 — 0
Ch(GNS)(Ta z)=q" 81 1 L 1 (7, j)
(14 yqz)(1 + y~1qz) M(T)
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2.8 Modular Transformation

Modular transformation of massive character:

1 22 2
ch(NS)(p,w,—— E) = "7 / dp/ dw'’
T T

e Tor cos(2mpp’)ch™9) (p', W's T, 2)

Modular transformation of identity character:

CZ2 ]-
ch (NS)(— )_e”_ / dp/ dw’
sinh (7 Qp) smh(Zﬂ' )

|cosh71'(Q —|—z =-)|?

h(VS) (p ’ w's s T z)

+discrete terms

Massless care is obtained similarly.

Remark 2

Discrete terms are necessary and contain topo-

logical information.
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2.9 Boundary states
We expand Cardy boundary state as

2 oo oo
(B,0| = 5/ dp/ dw¥o(p,w)p{(p,w| .
0 —0o0

with the normalization

B<<p7w|e ~mTH |p s W >>B

= 6(p — p')Q8(w — )b (p, w;iT) |
Solving
_ S), .
(B,0leTH|B, 0) = chd® (it)
by taking the “square root” of modular transfor-

mation, we obtain (Class 1 brane)

1 F(z 02 5
Q I‘(—z'Qp)I‘(l — %)

Po(p,w) =
Then
(B,p,w'|le"TH|B, 0) = ch™V9(p’,w’; it)
implies the Class 2 (noncompact) brane

¥y w(p,w) = thiwg_wz cos(27rpp’)
I'(iQp)l'(1+ i)
PR+ % +iB)T(— & +ib)




2.10 Modular bootstrap for crosscap states

We can also construct the crosscap state

from the modular bootstrap method.

(15)

The modular bootstrap assumption is (t = —1/4T)

(C—|e ™H|B, 0, +) = chGy (it) =

where () inserted character (Mobius strip) is

open,O

Qe27‘ritH

e—1 1 i 03(T + 3
Chg\,fg)(T) = q_Tl i q1 es a 12) ‘
(1+iq2)2  n(7 +3)°
The relevant modular transformation (t = —1/4T

: P = TSTTS) is given by

(NS)___ oodl/ood/
e Q/oo T

1

p’ oy
7T(§+2§)
1

1+ e

_ oy’
2

P, w/
. T(5-1=
14+ 2e <

(NS
X chf2

)(p', w'; 7)| + discrete terms .

9
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2.11 Crosscap states

We expand crosscap state as

9 [ o0
(C — | = _/ dp/ dw¥.(p,w)c{{p,w, —| .
Q 0 —00

Ishibashi crosscap states are defined by

—nTH(©)

|p7 ’ :|:>>C
= d(p — p')Qd(w — w)chy ) (p, w; iT) .

B<<p7w7 :|:|6

The modular bootstrap equation
(C — e~ B, 0, +) = ch$\y (it)
is solved by

\Ilc(paw) — \PO(_paw)_lp(paw) 9
where modular transformation matrix P(p,w) is
given by

P(p,w) =
icosh(%) [ i cosh( ) cos(%z) + sinh(3) smh(”Qp)

cosh( 2) + cos(%“’
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2.12 Consistency checks
The boundary/crosscap states con-
structed above survives some consistency

checks.
e Overlaps between various boundary states
satistfy expected Cardy condition.
e Overlaps between compact boundary states and

crosscap states satisfy expected Cardy condi-

tion.

e However overlaps between noncompact bound-
ary states and crosscap states leave some sub-

tlety (related to IR divergence?).

e Semiclassical Iimit i1s consistent with minisu-

perspace approximation.

e The boundary state is consistent with the con-

formal bootstrap.
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2.13 On the discrete terms

Discrete terms contain topological infor-

mation

Discrete terms coupling to R-R ground states

(chiral primary) can be seen as period integrals:
I} = (i|B,) , II; = (i|C)

In the Landau-Ginzburg approach (with nontriv-

ial dilaton),

(]

S
1) = /dSPYCIJi(S) exp(—TQ — ueés) :

S0
gl — e 2 is due to linear dilaton. Interestingly,

. . _5Q
if we make change of variables as X = e 72, we

can eliminate the linear dilaton term:

_2
I = /chp;(X) exp(—pX ) .

1

This is consistent with the conjecture that
LG model with A/ = 2 LFT is equivalent
to LG model with negative power poten-

2
tial p X <2 .
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2.14 Applications
Several applications of the boundary /crosscap states

of N/ = 2 Liouville theory include:

e Branes/orientifolds in NS5-brane background

e Supersymmetric matrix models in two dimen-

sion
e Branes in two-dimensional black holes

e (Special) Lagrangian geometry of singular CY

spaces (intersection number, vanishing cycle...)

e (After Wick rotation) inhomogeneous decay of
rolling D-brane (orientifold?) in INS5-brane

background (We’ll see next)

e Sen’s conserving charge (work in progress)
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e
I Summary of this section I
-]
e N =2 LFT has a duality property.
(hep-th/0402009)
e Target space of N = 2 LFT is a singular CY

space.

e Boundary states can be constructed from mod-

ular bootstrap.

e Crosscap states can be constructed too.

(hep-th/0409039)
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3 Application to NS5-brane background

3.1 CHS revisited
R>' X Ry X SU(2)n_2 -

In the following, we consider the combination

R' x R, to make N/ = 2 LFT.

This combination leads to decompactified

version of N = 2 LFT.

Especially, if we take R!' as a time-direction, the

time dependent physics will show up.

Question 1
What happens to the branes so far constructed

in this setup?

Class 2 brane in the noncompact theory
becomes stable non-BPS brane (hairpin
brane). It becomes infalling brane into

the NS5 core after the Wick rotation
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3.2 Non-BPS hairpin brane
Class 2 brane in the noncompact theory
becomes stable non-BPS brane (hairpin

brane).

L(iQp)T'(1 + i)
L(; +5+i5rG — 5 +i5)
In the large N (Q@ = /2/N — 0) limit, this

becomes the hairpin curve

U(p,q) =

e 2 = 2cos——.

Indeed the Fourier transform of this wavefunc-
tion 1s

U(p,x) — 5(6_% — 2 cos %)

Exact calculation gives

@
U(p,x) ~ ! exp _®_ ¢ °

(2 cos —) ot Q (2 cos Qz )92
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5.1 I 3
» XeR ryesS cS

D D + D
xm
C j
D D
. . D
¢ ¢

The direct calculation of /N\g and R sector shows

this is non-BPS (in contrast to the compact case).

Remark 3

e This brane is asymptotically D-D pair.

e Would be tachyon is massive because of the

asymptotic separation

e Usual class 2 brane is just a straight line and

BPS.

e Class 1 brane is wrapping vanishing cycle and

W-boson in LST (BPS).

e Bosonic hairpin was first introduced by Rib-

ault and Schomerus (hep-th/0310024).



3.3 Rolling D-brane in NS5 background
The DBI action in the NS5-brane back-

ground predicts a rolling D-brane solution

(Kutasov).

The classical orbit is given by

Q¢ ot

e 2 = 2cosh —
2

This is nothing but the Wick rotation of the Class
2 (hairpin) D-brane

e 2 = 2cos—.

In our paper (hep-th/0406173) we constructed

this boundary state.
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Remark 4

e Kutasov argued that the potential of the rolling
D-brane can be mapped to the potential of the

unstable D-brane in the flat space.

Ly =V(T)\/1+ 8, TO*T

Lppr = 1—|—HR8R8”R
T/

e We will see that the emission rate is consistent

with this correspondence.

e We can also calculate the energy-momentum

tensor of the rolling brane from boundary state.

e Energy is related to the bulk cosmological con-

stant (— just the shift of the radial direction)
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3.4 Naive Wick rotation

Naive Wick rotation in the momentum

space does not work.

Try naive Wick rotation q — w.
LEQp)T(1 +ig)
T(;—ig+i§TG +ig+i5)

This does not make sense! For example, the ab-

\Il’fz]c\zrz‘f))e (p9 (.U) —

solute square is

cosh(z%") + cosh(%p)
sinh (7w Qp) sinh(?p)

which is divergent under w — oo.

S
TS (p,w)|? ~

— no meaningful open string spectrum.

Besides the position space wavefunction (in the

classical limit) is not the curve

_ 99 ot
2

e — 2 cosh —
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3.5 Correct Wick rotation 1

We should perform Wick rotation in the

position space.

TV (o, )
. , _
ot\ 7! o e ¢S
= ( 2cosh — exp | —— —
2 o =2
(2 cosh %) Q2

After the Fourier transformation:
20 sinh(%p )

2 cosh[5(p + w)] cosh[Q(p — w)]
L(iQp)r(1 +i3)
T(}+4% + 320G + i +142)

V9 (p, w) =

We have a nontrivial dumping factor!

Its absolute square behaves nicely:
(W) (p, w)|* =
2sinh (222)

{cosh ( ) + cosh ( )} sinh (7w Qp) |
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3.6 Correct Wick rotation 2

The reason why we failed in the naive

Wick rotation is that x direction is effec-

tively compact while t is noncompact.

— Need to align many space-like branes

(cf: rolling tachyon)

z . . wl'(—p
-5 (G —3—-i)l(E+3—1%3)
/ dx [2 cos ] P Lel1®
c
sgn(p) sinh(7p) 7' (—ip)

T2 cosh[Z(p + iq)] cosh[Z(p — iq)]

X .
(- —irG+3—i)
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3.7 Density of states

Density of states is self-dual and positive

definite satisfying Cardy condition.

p N9 (p, W) :/ dw/ dp cos(2wpp’) cos(2mrww’)
—0o0 0

2 sinh (%P)

[cosh (27“") + cosh (?)} sinh (7 Qp)
2 sinh ( Q‘*’,

- [cosh (27“"> + cosh ( arad } sinh (7w Qw’) ’

Remark 5

e R-sector has a similar structure (spectral flow).

e R-sector has a light cone divergence p = Fw.

w? + p?
P (B) w)|? = X
| (p7 )l (wz . pz)
2 sinh (2%1))

{cosh (275)) — cosh (%)} sinh (7 Qp) |

e Maybe explained from the linear dilaton.
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3.8 Evaluation of decay rate

We can study decay rate of rolling brane.
Emission rate shows power-like behavior

as unstable D-brane in flat space.

The decaying rate is

NS Ay = /w@
0

Wp

2 sinh (2%0)

{cosh (27;%) + cosh (%)} sinh (7 Qp)
wp = \/p2 + M?2 .

If we consider Dp-brane, we have (d = 5 — p)

_ 2
N(M) ~ M 12+de—27rM 1—%

Combined with the density of states n(M) =
2

Q
M—3627TM 1_T,

N o° P4 E > _p
_N/ AM M- ,_N/ dMM~5 .
% v
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The decaying rate is exactly same as that
of the rolling tachyon in flat Minkowski
space (LLM).

Remark 6

e This is expected from Kutasov’s argument that

two theories can be mapped to each other.

e Even if we have a linear dilaton, emission rate

compensates unlike UV finite decay.

e If we analytically continue it to Q@ > /2,
emitted energy is finite!
e Especially, in the case of 2D black hole, radi-

ation from the rolling D-brane is finite (now

under investigation).
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I Summary of this section I

e Non-BPS hairpin brane in NS5 background is

Class 2 brane.

(hep-th/0406173)

e Rolling brane is a Wick rotation of hairpin

brane.
e Naive Wick rotation does not work.

® We performed a sophisticated Wick rotation.

(hep-th/0406173)

e FEmission rate 1s also studied.
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]
I Some Future Works I
T

e Application to 2D (toplogical /physical) black
hole.

e Sen’s conserving charge and W, algebra of the

rolling D-brane.
e (N = 2) Liouville theory in higher genus?

e Topological twist of the N/ = 2 LFT and cou-

pling to D-branes.

e Connection to various matrix models and non-

perturbative formulation.



