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Noncommutative deformations of quantum field

theories have been studied during the past few

years. The deformed theories exhibit rather in-

tersting perturbative and nonperturbative be-

haviour.

Local field theory
nc def−→ Non-local field theory

Some (effective) field theories are nonlocal to

start with. We shall study one such.

It is the effective field theory of a scalar field:

the tachyonic scalar of the so called p-adic

string theory.

(Freund & Olson; Freund & Witten; Brekke,

Freund, Olson & Witten; Frampton & Okada;

Frampton, Okada & Ubriaco; · · ·)
(Also Volovic; Grossmann; · · ·)
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The p-adic string theory is an interesting the-

ory. (A sector) of this theory is amenable to

exact calculations.

It shares many qualitative properties of usual

string theory. For example, one can check the

Sen conjectures for the open string tachyon in

the exact effective field theory.

Therefore, p-adic string theory could be a use-

ful guide to difficult questions in (usual) string

theory.

However, this requires a better understanding

of the p-adic string itself. We only know some

properties of its D-branes in flat spacetime.

What about putting p-adic strings in non-trivial

backgrounds?
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For example,

• in curved spacetime: from closed string

condensate;

• in electromagnetic field: from open string

background.

A particularly simple background: a constant

background of the rank two antisymmetric ten-

sor field B.

It provides a noncommutative deformation of

the effective field theory in spacetime.

(Schomerus; Witten; · · ·)

Assumption (for the first part):

the same happens for p-adic string theory.
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Abbreviations

p-tachyon : Tachyon of p-adic string theory

(Cf: Ptolemy, Pterodactyl and Ptennisnet!)

Similarly:

p-string : p-adic string
p-soliton : Soliton of p-string theory
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Review of p-string theory

(à la Brekke, Freund, Olson & Witten (1987))

Recall tree level scattering amplitude of N on-

shell tachyons of momenta ki (i = 1, · · · , N),

k2
i = 2,

∑
ki = 0 is:

AN({ki}) =

∫

dξ1 · · · dξN−3

×
N−3∏

i=1

|ξi|kN ·ki |1− ξi|kN−1·ki

×
∏

1≤i<j≤N−3

∣
∣
∣ξi − ξj

∣
∣
∣
ki·kj

.

The integrals are over the real line R with its

translationally invariant measure dξ. Integrand

involves absolute values of real numbers.

The 4-point amplitude can be computed ex-

actly in terms of Euler beta function. But AN

for N ≥ 5 cannot be evaluated analytically.
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The key observation of BFOW: all the ingre-

dients of the amplitude AN have p-adic ana-

logues.

Proposal: Define p-string theory as follows:

• replace the absolute value norm | · | of R

in the integrand by the p-adic norm | · |p of

Qp:

| · | → | · |p,

• replace integrals over R by integrals over

Qp (using the latter’s translationally invari-

ant measure).

The consequence of this is amazing:

All N-point amplitudes for p-tachyons can now

be computed exactly.

I.e., we know the effective field theory of the

tachyonic scalar field of p-string theory exactly.
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\begin{digression}

Consider the rational numbers Q. We are fa-

miliar with the absolute value norm. Now we

will define different norms on this field.

1. Fix a prime number p ∈ {2,3,5,7,11,13, · · ·},

2. For any integer z, find the highest power

of p that divides it. Call it ordpz.

ordp ∼ logarithm: ordp(z1z2) = ordpz1 + ordpz1.

3. For a rational number q = z1
z2

:

ordpq = ordpz1 − ordpz2.

4. The p-adic norm is:

|q|p =

{

p−ordpq, q 6= 0
0, q = 0
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Examples: |5|5 = 1
5
, |35|5 = 1

5
, |250|5 = 1

53 = 1
125

,

|6|5 = 1,
∣
∣2
3

∣
∣
5
= 1,

∣
∣2
5

∣
∣
5
= 5, |96|2 = 1

32
.

|q|p satisfies all the properties of a norm. In fact there
is a stronger triangle inequality:

|q1 + q2|p ≤ max
{
|q1|p , |q2|p

}

This norm is called non-Archimedian and leads to many
strange properties:

• All triangles are isosceles.

• Any point in the interior of a disc is a centre.

• If |q1|p < |q2|p, then |n q1|p < |q2|p for any n ∈Z.

Now recall that the field of real number R is

obtained from Q adding to Q the limit points

of Cauchy sequences. The limit points are de-

termined by the absolute value norm.

Cauchy completion of Q by the p-adic norm

leads to a new field of numbers Qp
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Any number in Qp can be represented as a

power series in p

ξ = pN
(

ξ0 + ξ1p + ξ2p2 + · · ·
)

where, ξn = {0,1,2, · · · , p− 1}, ξ0 6= 0.

E.g. in Q7,
1
2
= 4 + 3.7 + 3.72 + 3.73 + · · ·.

This is like the Laurent series expansion.

Elements of Qp with norm at most 1, form a

maximal compact subring:

Zp = {ξ ∈Qp : |ξ|p ≤ 1},

the ring of p-adic integers. Ordinary integers

are a dense subset in it.
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Integration in Qp: There is translationally in-

variant real valued Haar measure dx.

Examples:

• Normalization:
∫

Zp
dξ = 1.

• Gelfand-Graev-Tate gamma-function:

Γ(s) =

∫

Qp
dξ e2πi{ξ} |ξ|s−1

p =
1− ps−1

1− p−s

[Cf: ΓR(s) =
∫

R
dx e2πi{x} |x|s−1 =

2 cos(πs/2)
(2π)s ΓEuler(s).]

and beta-function:
∫

Qp

dξ |ξ|x−1
p |1− ξ|y−1

p = Γ(x)Γ(y)Γ(1−x−y)

\end{digression}
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Dynamics of the p-tachyon field is summarized

by its spacetime effective lagrangian:

L(p) =
p2

g2(p− 1)

[

−1

2
ϕp−

1
2 ϕ +

1

p + 1
ϕp+1

]

.

The above is written in terms of

ϕ(x) = 1 +
g

p
T(x),

T is the original p-tachyon.

Perturbative vacuum T = 0 correspond to

ϕ = 1.

Parenthetic remark: Although derived for a prime p, the

spacetime action makes sense for all integer values of p.
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Kinetic term in is non-standard and involves an

infinite number of derivatives.

Potential has a local minimum and two (re-

spectively one) local maxima for odd (respec-

tively even) integer p:

p-tachyon potential

-2 -1 1 2

-0.2

0.2

0.4

0.6

Tachyon Potential

Potential always has runaway pathological sin-

gularities.
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Equation of motion:

p−
1
2 ϕ = ϕp.

The solutions to these are:

• The constant configuration ϕ(x) = 1.

This is the vacuum around which we have

quantized — a space-filling D-25-brane.

The tension of the brane is

T25 = −L(φ = 1) =
1

2g2

p2

p + 1
.

• The constant configuration ϕ(x) = 0.

There are no perturbative excitation around

this configuration. Energy vanishes in this

configuration.

Closed string vacuum?

• Space(time) dependent solutions:
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The eqn of motion is separable in orthogonal

coordinates.

p−
1
2∂2

y f(y) = fp(y)

This has a non-trivial solution:

f(y) = p1/2p(p−1) exp

(

− p− 1

2p ln p
y2

)

.

Gaussian lump with correlated amplitude and

spread.

The configurations

ϕ(x) = f(xm+1)f(xm+2) · · · f(x25) = F (m)(x⊥)

is a solution to the eqn of motion for m =

0,1, · · · ,24.

(x0, x1, · · · , xm
︸ ︷︷ ︸

x‖

, xm+1, · · · , x25
︸ ︷︷ ︸

x⊥

)

ϕ(x) = F (m)(x⊥) describes a lump with energy

localised around the hyperplane x⊥ = 0.
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This is a solitonic m-brane.

Its tension (=energy/volume) is

Tm =
p2

2g2(p + 1)




2πp2p/(p−1) ln p

p2 − 1





(25−m)/2

≡ 1

2g2
m

p2

p + 1
.

Ratio of tension Tm
Tm−1

is independent of m: as

in ordinary string theory.

Can study the worldvolume theory on the soli-

ton. A consistent truncation keeping only the

tachyon is possible. There are also massless

fields corresponding to translation zero modes.

p-Tachyon field behaves according to the con-

jectures of Sen. (DG & Sen, 2000)
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Noncommutative field theories

Spacetime coordinates do not commute:

[xi, xj] = iθεij.

For simplicity, i, j = 1,2 and θ =real constant.

In string theory, the deformation arises from a

constant background of the two-form antisym-

metric tensor field B along x1-x2.

An equivalent description: use commuting co-

ordinates, but while multiplying fields, which

are dependent on x1 and x2, use the Moyal

star product

f ? g = f(x1, x2) exp

(
i

2
θεij
←
∂ i

→
∂ j

)

g(x1, x2),

instead of ordinary pointwise multiplication.

Alternatively, f, g are operator-valued functions

through the Moyal-Weyl correspondence.
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(Commutative) field theories may be deformed

by using Moyal star product in the action, equa-

tions of motion, etc.

Example: theory of a single scalar field φ:

LNC =
1

2
(∂µφ) ? (∂µφ)− V(?φ),

where, V(?φ) may be, e.g.,

V(?φ) ∼ m2

2
φ?φ+

g

3!
φ?φ?φ+

λ

4!
φ?φ?φ?φ+ · · · .

Noncommutative field theories exhibit interest-

ing perturbative and nonperturbative proper-

ties.

Noncommutative scalar field theory has soliton

solutions in the limit of infinite noncommuta-

tivity: θ →∞.

(Gopakumar, Minwalla & Strominger; · · ·)
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The simplest of the solitons is a gaussian lump

whose width and amplitude are fixed:

φ(x1, x2) = 2exp

(

−(x1)2 + (x2)2

θ

)

. (1)

More general solutions correspond to the solu-

tions of projector equation:

π ? π ∼ π.

However, these solitons become unstable at fi-

nite θ:

Higher projectors are unstable and decay to the

gaussian lump,

Gaussian lump becomes unstable below a crit-

ical value of θ.

These (and other) noncommutative solitons have been

used in string (field) theory to understand the dynamics

of the tachyon. (Dasgupta, Mukhi & Rajesh; Harvey,

Kraus, Larsen & Martinec; · · ·)
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Noncommutative deformation of the p-tachyon

Use ?-product in the p-tachyon action:

L(p)
NC = −ϕ ? p−

1
2 ϕ +

1

p + 1
(?ϕ)p+1,

We define the noncommutative p-tachyon by

the above action.

Equation of motion:

p−
1
2 ϕ = (?ϕ)p.

We will be interested only in the part depen-

dent on x1 and x2.

The solutions, ϕ = 0,1 describing constant

configurations, are still solutions of the de-

formed eom.
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There are nontrivial solutions: these are gaus-

sian solitonic lumps.

Observe: ?-product of gaussian is again a gaus-

sian:

Ae−a|z|2?Be−b|z|2 =
AB

1 + abθ2
exp

(
a + b

1 + abθ2
|z|2

)

.

Make a gaussian ansatz:

ϕ(x1, x2) = A2 exp
(

−a
[

(x1)2 + (x2)2
])

and equate width a and amplitude A on both

sides of eom.
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Spread a is determined by a polynomial equa-

tion of degree p:

bp/2c
∑

i=0

(
p

2i

)

(aθ)2i −

(1− 2a ln p)

b(p−1)/2c
∑

i=0

(
p

2i + 1

)

(aθ)2i = 0,

For an odd p, there is always one real root. For p =

2, the roots are real, with the positive root being the

relevant one.

The polynomial for p = 3

0.1 0.2 0.3 0.4 0.5

-2

-1

1

2

3

4

Variation of width with theta
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Limiting cases:

• Commutative limit: θ = 0

The width of the commutative gaussian

lump of p-string theory a = (p − 1)/2p ln p

is recovered.

• Large noncommutative limit: θ →∞
Keeping only the term of highest degree in

a naively is not the right thing. Indeed us-

ing a ∼ 1/θ for large θ, this is subdominant.

Correct treatment gives a = 1/θ.
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Width as a function of θ

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

2

4

6

8

10
Contour Plot of the width polynomial

Polynomial as a function of a and θ

0 0.1 0.2 0.3

a

0
2

4
6810theta

0

5

10

15

f

0.1 0.2 0.3
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Amplitude A is determined in terms of the

width:

A =






b(p−1)/2c
∑

i=0

(
p

2i + 1

)

(aθ)2i






1/2(p−1)

.

This, again, interpolates between

• Commutative limit (θ = 0):

A = p1/2(p−1),

• Large noncommutativity limit (θ →∞):

A =
√

2.

Summary:

Noncommutative p-soliton interpolates smoothly

between noncommutative soliton and commu-

tative p-soliton.

25



p→ 1 Limit & BSFT

In this limit the lagrangian of p-string theory

reduces to:

L(p→1) = −1

2
ϕ ϕ− 1

2
ϕ2

(

lnϕ2 − 1
)

.

This is exactly the boundary string field the-

ory (BSFT) action for the tachyon of ordinary

bosonic string, truncated to two derivatives!

(Gerasimov & Shatashvili; Kutasov, Marino &

Moore)

Introduce noncommutativity [Cornalba, Okuyama]:

L(p→1)
NC = −1

2
ϕ ? ϕ− 1

2
ϕ ? ϕ (ln?(ϕ ? ϕ)− 1)

yields the equation of motion:

ϕ + 2ϕ ? ln? ϕ = 0.
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Solutions:

• Constant configurations ϕ = 0,1,

• Deformation of gaussian lump of BSFT?

Gaussian ansatz: LHS is exactly as in the com-

mutative case.

ϕ = 4a(a|z|2 − 1)A2 exp(−a|z|2).

RHS is less obvious, since we need the ?-deformed

logarithm of an ordinary exponential.

From the n-fold ?-product of the gaussian, we

can extrapolate to fractional powers.
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For g(z) = Ae−a|z|2:

lim
ε→0

[
1

ε
(?g(z))1+ε − 1

ε

]

=
[
(

2 lnA− (aθ)2

1.2
− (aθ)4

3.4
− · · ·

)

−2a|z|2
(

1

2
− (aθ)2

1.3
− (aθ)4

3.5
− · · ·

)
]

A2e−a|z|2

Hence, by comparison

2a =
1− (aθ)2

2aθ
ln

(
1 + aθ

1− aθ

)

2 lnA =
1 + aθ

2aθ
ln(1 + aθ)− 1− aθ

2aθ
ln(1− aθ)

Width a and amplitude A are determined by

transcendental equation.

They interpolate smoothly between the BSFT

solution a = 1
2, A =

√
e to the GMS solution

a = 1
θ , A =

√
2.
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Multisolitons

Consider

fw1w2 = exp

(

−1

θ
(z̄ − w̄1)(z − w2)

)

.

The configuration

n∑

i,j=1

Aijfwiwj =
∑

i,j

Aije
−(z̄−w̄i)(z−wj)/θ

solves the eom π ? π ∼ π at θ →∞ for specific

choices of Aij.

(Headrick, Gopakumar & Spradlin)

By Moyal-Weyl correspondence

fwiwj ∼ |wi〉〈wj|,
where,

|w〉 ∼ ewa†|0〉
is a coherent state. The amplitudes of a mul-

tisoliton are

||Aij|| ∼ ||〈wi|wj〉||−1.
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More generally, define:

fwiwj(aij, Aij) = Aij exp
(

−aij(z̄ − w̄i)(z − wj)
)

.

The LHS of the eom of the p-tachyon:

e−
1
2 ln p fwiwj(aij, Aij)

= fwiwj

(

aij

1 + 2aij ln p
,

Aij

1 + 2aij ln p

)

.

However, at arbitrary θ, the RHS involves

?-product of these fwiwj(aij, Aij). This is given

by:

fw1w2(a12, A12) ? fw3w4(a34, A34) = fũṽ(ã, Ã),

where, the modified width ã, amplitude Ã and

the centres ũ and ṽ are given by:
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ã =
a12 + a34

1 + θ2a12a34

Ã =
A12 + A34

1 + θ2a12a34

× exp

{

− a12a34

a12 + a34
(w̄1 − w̄3)(w2 − w4)

}

¯̃u =
1

a12 + a34

[

a12(1 + a34θ)w̄1

+a34(1− a12θ)w̄3

]

ṽ =
1

a12 + a34

[

a12(1− a34θ)w2

+a34(1 + a12θ)w4

]

.

So, not only do the width and the amplitude

change, the centres are also shifted.
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Noncommutativity from B-field?

Question: Is there a microscopic (worldsheet)

understanding of the noncommutativity?

Recall that the worldsheet of the p-adic string

is an infinite tree, a graph without any loop. In

other words, it is a Bethe lattice with (p + 1)

nearest neighbours. [Zabrodin et al.]

oo 0
C

p=3

C C C C−2 −1 1 2

Wordsheet of the 3-adic string:

The tree Tp for p = 3.

32



The boundary of the tree Tp is Qp (through

the power series expansion

ξ = pN(ξ0 + ξ1p + ξ2p2 + · · ·),

ξn ∈ {0,1, · · · , p− 1}, ξ0 6= 0.)

The usual string worldsheet is the strip which is confor-

mally equivalent to the UHP = SL(2,R)/SO(2,R).

SL(2,R) acts on the boundary of the worldsheet as a

symmetry, (and SO(2) is its maximal compact sub-

group).

The symmetry group of the boundary of the

p-adic worldsheet is PGL(2,Qp).

PGL(2,Qp)/PGL(2,Zp) = Tp
The ‘worldsheet’ of the p-adic string is discrete, but its
boundary is a continuum.

p-adic string provides an exotic discretisation of the open

string worldsheet.
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Polyakov action is the discrete lattice action:

Sp(X) =
1

2
βp
∑

e

(δeXµ)(δeXν)ηµν

The eqn of motion is the discrete Laplace eqn. Both

Neumann and Dirichlet boundary conditions lead to well

defined boundary value problem. Hence, one can have

D-branes.

Integrate over the degrees of freedom in the

bulk of Tp to get a non-local action on the

boundary [Spokoiny, Zhang, Parisi]:

Sp =
p(p− 1)βp

4(p + 1)

∫

Qp

dξ dξ′
(

Xµ(ξ)−Xµ(ξ′)
)2

|ξ − ξ′|2p
.

This form will be more useful to us, since a constant
B-field couple to the boundary. For the usual string,
after an integration by parts:

∫

∂Σ

dξ BµνX
µ(ξ)∂tX

ν(ξ)

Formally same as the insertion of a background gauge

field Aµ [X(ξ)] ∼ BµνXν(ξ).
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Now the problem is with a tangential deriva-

tive. Get around this through the Cauchy-

Riemann relation for harmonic/ analytic func-

tions. Define:

∂
(p)
t Xµ(ξ) ≡ ∂ξX

µ =

∫

Qp

dξ′
sgnτ(ξ − ξ′)
|ξ − ξ′|2p

Xµ(ξ′)

\begin{digression}

The field Qp (like R) is not algebraically closed.

Not all ξ ∈ Qp has a square-root in it.

Recall, quadratic extension of R is R(
√
−1) = C.

Three inequivalent quadratic extension of Qp:

Qp(
√

τ) for τ = ε, p and τ = εp (p 6= 2),

where ε is a (p− 1)-th root of unity.
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Define a (real valued) function on Qp (not on

its extension):

sgnτ(ξ) =







+1, if ξ = ζ2
1 − τζ2

2
for some ζ1, ζ2 ∈ Qp,

−1 otherwise

Moreover, if we demand antisymmetry

sgnτ(−ξ) = − sgnτ(ξ)

we must restrict to

τ = p, εp

p = 3 (mod 4)

Generalised gamma-function:

Γτ(s) =

∫

Qp

dξ e2πiξ |ξ|s−1
p sgnτ(ξ)

= ±
√

sgnτ(−1) ps−1

2

\end{digression}
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Proposed action with B-field

∫

Qp

ηµν
(

Xµ(ξ)−Xµ(ξ′)
) (

Xν(ξ)−Xν(ξ′)
)

|ξ − ξ′|2p
dξdξ′

+
i(p + 1)

p2Γτ(−1)

∫

Qp

Bµν Xµ(ξ)
sgnτ(ξ − ξ′)
|ξ − ξ′|2p

Xν(ξ′)dξdξ′

Easy to solve for the Green’s function in the

presence of the B-field:

Gµν
(

ξ − ξ′
)

= −Gµν ln |ξ − ξ′|p +
i

2
θµνsgnτ

(

ξ − ξ′
)

,
(

1

η − iB

)

= G−1 +
i

2

p− 1

α′p ln pΓτ(0)
θ

Notice the similarity with the usual bosonic

string [Fradkin-Tseytlin, Abouelsaood et al].

〈 N∏

I=1

eikI ·X(ξI)

〉

B

=
∏

I<J

exp
(

− i
2kIθkJsgnτ(ξI − ξJ)

)

|ξI − ξJ |−kIGkJ
p

[Grange, hep-th/0409305]
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Formal consequence of the B-field

This may seem to be the end of the road, since:

[Xµ(0), Xν(0)]

= T (〈Xµ(0)Xν(0−)〉 − 〈Xµ(0)Xν(0+)〉)
= lim

sgnτ (ξ)=−1
|ξ|p→0

〈Xµ(0)Xν(ξ)〉

− lim
sgnτ (ξ)=+1
|ξ|p→0

〈Xµ(0)Xν(ξ)〉

= i θµν

but there are caveats.

There is no natural notion of an order in Qp.

We can define an order by, say, ordering the

ξn in ξ = pN ∑
ξnpn. We can also distinguish

between positive and negative p-adic numbers.

But, this notion is not GL(2,Qp) covariant.
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Tachyon scattering amplitudes

To establish the relation between B-field and

spacetime noncommutativity, one needs the

tachyon scattering amplitudes.

Three-tachyon amplitude

A(3) = cos
1

2
k1θk2 ≡ c12

• There is no projective invariance. But we fix three
positions by hand.

• Added and averaged over another term with 1↔ 2.

This agrees with the result from noncommuta-

tive deformation of the tachyon effective field

theory.
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Four-tachyon amplitude

From p-adic string theory with B-field:

A(4) =
p− 1

p

(

c12c34

pα(s) − 1
+

c13c24

pα(t) − 1
+

c14c23

pα(u) − 1

)

− 1

p
(c12c34 + c13c24 + c14c23)

+
p + 1

p
c12c13c23

Compare with the result from field theory:

A(4) =
p− 1

p

(

c12c34

pα(s) − 1
+

c13c24

pα(t) − 1
+

c14c23

pα(u) − 1

)

+
p− 2

p
(c12c34 + c13c24 + c14c23)

Not quite the same, unfortunately!
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Summary

Studied a noncommutative deformation of the

exact effective action of the p-tachyon.

Obtained a family of gaussian lump solution for

all values of the noncommutativity parameter

θ. Smoothly interpolates between the soliton

of (commutative) p-adic string theory and the

noncommutative soliton of GMS.

These solitons owe their existence to the infinite deriva-

tives in the equation of motion.

Meaningful p→ 1 limit gives smoothly interpo-

lating solitons in BSFT of usual bosonic string

theory.

Coupled B-field to the nonlocal action on the

boundary of the ‘worldsheet’ and examined its

effect on the spacetime theory. But . . .
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Some remarks

• Our lump solutions for all θ is unlike other

exact solutions. E.g., Polychronakos, Har-

vey et al obtained a family of solution in

a field theory of scalars and gauge fields.

But it has no smooth commutative limit.

• The similarity between the solitons of p-

string theory and noncommmutative field

theories have been noticed before. Dragovich

& Volovich noticed that the GMS soliton

for θ = 4 ln2 is identical to solitonic 2-

brane of the 2-adic string theory. This is

merely a coincidence and perhaps of no real

significance.
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• Still lacking a worldsheet understanding of

the noncommutative deformation in the space-

time effective action.

We coupled the B-field to the boundary. It

can be coupled to the bulk as
∫

X∗(B) = pull-back of the 2-form B

Problem is that there is no 2-cycle in the

tree. However, . . .

• p-adic string in other backgrounds?

Closed p-strings?

THANK YOU!
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