
YukawaInstituteKyoto YITP/K-885
September 1990

Revised

Quantum Hamiltonian Reduction and WB Algebra∗

Katsushi Ito† ‡

Yukawa Institute for Theoretical Physics
Kyoto University, Kyoto 606, Japan

ABSTRACT

We study the quantum Hamiltonian reduction of affine Lie algebras and the free field
realization of the associated W algebra. For the non-simply-laced case this reduction
does not agree with the usual coset construction of the W-minimal model. In particular
we find that the coset model (B(1)

n )k × (B(1)
n )1/(B

(1)
n )k+1 can be obtained by the quantum

Hamiltonian reduction of the affine Lie superalgebra B(0, n)(1). To show this we also
construct the Feigin-Fuchs representation of affine Lie superalgebras.

∗ Work supported in part by the Grant in Aid for Scientific Research from the Ministry of Education,
Science and Culture of Japan No. 02952037.

† Fellow of the Japan Society for the Promotion of Science
‡ Address after September, 1991: Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen,

Denmark



1 Introduction

In order to understand rational conformal field theories it is crucial to characterize the

structure of the chiral algebras. The Ward identities, which arise from the symmetry gen-

erated by the chiral algebra, and the null state structure in its representation completely

determine the primary fields and their correlation functions on Riemann surfaces [1]. A

lot of work has been carried out to obtain the extension of the Virasoro algebra, such as

superconformal algebras and Kac-Moody algebras. Among them, so-called W-algebras

[2] generated by the integer spin fields have attracted much interest in the context of the

integrable models, and more recently in theory of the self-dual Yang-Mills field and the

self-dual gravity in the large N limit [3].

There exist at least two ways for the characterization of the W-algebra associated

with the Lie algebra g. First of all in the Goddard-Kent-Olive (GKO) construction [4]

the W-minimal models are realized as coset models ĝ(k) × ĝ(1)/ĝ(k+1), where ĝ(k) is an

affine Lie algebra of level k [5]. The chiral algebra structure of these coset models are

best described in terms of the Feigin-Fuchs (Coulomb gas) representation ([5]-[10]). The

second approach is a method of the quantum Hamiltonian reduction of a constrained Wess-

Zumino-Novikov-Witten (WZNW) model ([12]-[15]). In this construction the higher spin

currents can be expressed by a generator acting on a reduced Kac-Moody phase space

and a geometrical meaning is clearer compared to the coset construction. Bershadsky and

Ooguri have shown that a BRST gauge fixing procedure of the constrained A(1)
n WZNW

models turns out to be the coset models (A(1)
n )k × (A(1)

n )1/(A
(1)
n )k+1 by using the Feigin-

Fuchs representation of affine Lie algebras [14]. One can easily extend this result to the

case of the simply-laced (A-D-E types ) affine Lie algebras. After the BRST gauge fixing

a constrained WZNW model is equivalent to the corresponding coset model.

However in the case of the non-simply-laced algebra the situation is quite different.

Actually in the quantum Hamiltonian reduction, which will be discussed later in detail,
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the central charge of the Virasoro algebra becomes [15]

cQHR = r − 12(α+ρ − ρ̂

α+

)2,

where r is the rank of g and ρ (ρ̂) is half the sum of positive roots (coroots). On the other

hand the central charge of coset model ĝ(k) × ĝ(1)/ĝ(k+1) is

ccoset = c1 + ck − ck+1 = c1 − 12α2
0ρ

2, α2
0 =

1

(k + h∨)(k + 1 + h∨)
,

where ck is the central charge of ĝ WZNW model at level k and h∨ is the dual Coxeter

number of g.

For the case of simply-laced algebra, from the relations c1 = r, ρ = ρ̂ and the identifi-

cation α0 = 1/α+−α+, these three approaches give the same central charge and the same

Feigin-Fuchs representation. For the non-simply laced algebras,however, this equivalence

no longer holds because of c1 6= r and ρ 6= ρ̂. Moreover in the case of the type Bn, the

WBn-algebra of the coset model is generated by the fields with spins 2, 4, . . . , 2n and

n + 1/2 [8]. On the contrary the model obtained from a quantum Hamiltonian reduction

has the chiral algebras with spin 2, 4, . . . , 2n currents. Hence the quantum Hamiltonian

reduction has different chiral algebras compared to the coset models. It seems that the

quantum Hamiltonian reduction for the non-simply laced case, gives the conformal field

theory which has no coset realization, although we do not have a proof of this statement.

The purpose of this paper is to clarify the relation between the quantum Hamiltonian

reduction for the non-simply-laced affine Lie algebras and the coset models, especially

for the B(1)
n type. We shall show that the coset model (B(1)

n )k × (B(1)
n )1/(B

(1)
n )k+1 can

be obtained from the quantum Hamiltonian reduction of the affine Lie superalgebras

B(0, n)(1) but not from the affine Lie algebra B(1)
n . Since our explanation relies on the

free field realization we must construct the Feigin-Fuchs representation of the affine Lie

superalgebra B(0, n)(1)(= osp(1, 2n)(1)). In the case of the usual affine Lie algebra the

Feigin-Fuchs representation is naturally related to the holomorphic representation of the
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Lie algebra on the space of sections of the line bundles on the flag manifolds ([16]-[18]).

We will see that this construction can be extended to the super case by introducing the

fermionic coordinates for the super flag manifolds associated with the Lie superalgebras.

This paper is organized as follows: In section 2 we discuss the quantum-Hamiltonian

reduction of the affine Lie algebra and the associated W-minimal models using the Feigin-

Fuchs representations. In section 3 the Feigin-Fuchs representation of affine Lie superal-

gebras is studied. In particular we concentrate on the structure of the B(0, n)(1) type. In

section 4 a quantum Hamiltonian reduction for the affine Lie superalgebra B(0, n)(1) is

presented.

2 Quantum Hamiltonian Reduction of Affine Lie Al-

gebras

In this section we discuss a quantum hamiltonian reduction of the affine Lie algebras

based on the Feigin-Fuchs representation. Let ĝ be an affine Lie algebra associated with

the complex simple Lie algebra g. ∆ is a set of roots and ∆+(∆−) is a set of positive

(negative) roots. Let α1, . . . , αn be simple roots and λ1, . . . , λn be fundamental weights.

Half the sum of positive roots (coroots) ρ (ρ̂) is equal to
∑n

i=1 λi (
∑n

i=1 2λi/α
2
i ).

First we discuss the free field realization of the affine Lie algebras. Using the bosonic

ghosts (βα(z), γα(z)) (α ∈ ∆+) with conformal dimensions (1, 0) and the n free bosons

ϕ(z) = (ϕ1(z), . . . , ϕn(z)), whose correlation functions are βα(z)γα′(w) = δα,α′/(z − w)

and ϕi(z)ϕj(w) = −δi,jln(z − w), we express the Kac-Moody currents as ([18]):

J−α(z) = βα +
1

2

∑
β1∈∆+

N−β1,−αγβ1ββ1+α

+
∑
n≥2

B̃n

n!

∑
β1,...,βn∈∆+

N−β1,−β2−···−α · · ·N−βn,−αγβ1 · · · γβnββ1+···+βn+α,

for α ∈ ∆+,

Jα(z) = aα∂γα +
2iα+γαα · ∂ϕ

α2
− 1

2

∑
β1∈∆+

2α · β1

α2
γαγβ1ββ1 +

∑
β,β−α∈∆+

N−β,αγβββ−α
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+
∑
n≥2

B̃n

n!

∑
β1,...,βn∈∆+

2α · βn

α2
N−β1,−β2−···−βn · · ·N−βn−1,−βnγαγβ1 · · · γβnββ1+···+βn ,

for simple root α,

H i(z) = −iα+∂ϕi(z) +
∑

α∈∆+

αiγαβα(z), (i = 1, . . . , n), (1)

where α+ =
√

k + h∨ and h∨ is the dual Coxeter number of g. The coefficients B̃n are

defined as

B̃0 = 1, B̃1 = −1

2
, . . . ; B̃2n = (−1)n−1B2n, B̃2n+1 = 0, for n ≥ 1, (2)

where Bn are the Bernoulli numbers

B2 =
1

6
, B4 =

1

30
, . . . ; B2n+1 = 0 for n ≥ 1. (3)

A constant aα for a simple root α is given by [19]:

aα =
2k

α2
+

h∨ − α2

α2
. (4)

The screening operators, which correspond to the simple roots α, are

Sα(z) = (βα − 1

2

∑
β∈∆+

N−β,−αγβββ+α (5)

+
∞∑

n=2

B̃n

n!

∑
β1,...,βn∈∆+

N−β1,−β2−···−α · · ·N−βn,−αγβ1 · · · γβnββ1+···+βn+α)eiα−α·ϕ.

The energy momentum tensor is

TWZNW (z) = −1

2
(∂ϕ)2 − iρ · ∂ϕ

α+

+
∑

α∈∆+

βα∂γα. (6)

Next we consider the quantum Hamiltonian reduction following ref. [14]. We deform

the energy-momentum tensor by the Cartan part H i(z)

Tdeformed(z) = TWZNW (z) − ρ̂ · ∂H(z), (7)

such that the currents J−αi
(z) for a simple root αi have conformal dimensions 0. In fact

we have the operator product expansion:

Tdeformed(z)J−α(w) =
(1 − ρ̂ · α)Jα(w)

(z − w)2
+

∂Jα(w)

z − w
+ · · · , (8)
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and ρ̂ · αi = 1 for a simple root αi. Therefore one can put the constraints([15]):

J−α(z) =

{
1, for simple roots α,
0, for non-simple roots α ∈ ∆+.

(9)

The conformal dimensions of the bosonic ghosts βα and γα become 1 − ρ̂ · α and ρ̂ · α,

respectively, with respect to (7).

Finally we apply a BRST gauge fixing by introducing the fermionic ghosts (bα, cα)

(α ∈ ∆+) with weights (1 − ρ̂ · α, ρ̂ · α) and a BRST charge QBRST =
∫

JBRST (z)dz/2πi.

The BRST current is given as

JBRST (z) =
∑

α∈∆+

(J−α(z) − µα)cα(z) − 1

2

∑
α,β∈∆+

Nα,βcα(z)cβ(z)bα+β(z), (10)

where µα = 1 for a simple root α and 0 otherwise. The total energy-momentum tensor

can be obtained by adding the part of fermionic ghosts and is shown to be equal to

T (z) = −1

2
(∂ϕ)2 − i(

ρ

α+

− α+ρ̂) · ∂2ϕ + {QBRST , ∗}. (11)

Therefore, up to a BRST exact term, the result gives the Feigin-Fuchs representation of

the corresponding W -algebras. In the simply-laced Lie algebra all the roots have the same

length squared α2 = 2, which means ρ = ρ̂. The energy momentum tensor is

T (z) = −1

2
(∂ϕ)2 − iα0ρ · ∂2ϕ, (12)

where α0 = 1/α+ − α+. We get the well-known free field realization of the W-minimal

models by putting k + g as p/q, where p, q are coprime integers. The screening operators

of the W-minimal models are given by

s±αi
(z) = eiβ±αi·ϕ(z), (13)

where β± = −α0 ±
√

α2
0 + 1. Since the operators s−αi

are BRST equivalent to those of

the affine Lie algebra Sαi
([14]) the null field structure of the representation is isomorphic.

Therefore one can apply Felder’s cohomological argument to the W-algebra and obtain

the character of the W-algebras.
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Now we consider the reduction of the B(1)
n type, for which we have ρ̂ = ρ + λn. The

central charge becomes

c = n − (α0ρ − α+λn)2 = n{1 − 3α2
+ + 6α0α+n − α2

0(2n − 1)(2n + 1)}. (14)

The screening operators associated with the simple roots αi (i = 1, . . . , n; αn is the short

root) are expressed as the vertex operators;

s±αi
(z) = eiβ±αi·ϕ(z), (i = 1, . . . , n − 1)

s+
αn

(z) = ei2α+αnϕ(z), s−αn
(z) = eiα−αnϕ(z), (15)

where α− = −1/α+. The central charge (14) is completely different from the coset

realization of the W-minimal model of B(1)
n : (B(1)

n )k × (B(1)
n )1/(B

(1)
n )k+1, whose central

charge is given as

c = (n +
1

2
)(1 − 2n(2n − 1)

(k + 2n)(k + 2n − 1)
). (16)

At the classical level, the higher-spin currents Wk(z) are derived from the Bn type

Miura transformation;

Rn(z) = (iα0∂ + ∂ϕ1) · · · (iα0∂ + ∂ϕn)(iα0∂)(iα0∂ − ∂ϕn) · · · (iα0∂ − ∂ϕ1)

=
2n+1∑
k=0

Wk(z)(iα0∂)2n+1−k. (17)

Here the currents W2k+1(z) (k = 0, . . . , n) are expressed in terms of the currents W2k(z)

(k = 1, · · · , n) and their derivatives. At the quantum level we need the quantum correction

to the W currents. But the content of the spins of does not change. On the other hand,

the coset model has the W currents with spins 2, 4, . . . , 2n and n+ 1
2
. Therefore the chiral

algebras are completely different.

3 Feigin-Fuchs Representation of Affine Lie Superal-

gebra B(0, n)(1)

In this section we will construct the Feigin-Fuchs representation of affine Lie superalgebras

([20],[22],[21]). In particular we discuss the algebra B(0, n)(1) in detail since we use this
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model to construct the B(1)
n coset models. The construction presented here, however, can

be applied to other affine Lie superalgebras. The method to construct the representation

is essentially the same as the affine Lie algebra. In the Lie superalgebra case one needs

the fermionic coordinates in addition to the usual bosonic coordinates.

We start from the holomorphic representation of a complex simple Lie superalgebra

g ([20]). A Lie supergroup G corresponding to a Lie superalgebra g admits a Gauss

decomposition G = N+HN−, associated with the decomposition of the Lie superalgebra

g = n− ⊕ h ⊕ n+, where n+ (n−) is a nilpotent subalgebra of g generated by positive

(negative) roots and h is a Cartan subalgebra. N± and H are generated by n± and h,

respectively. Let ∆ be a root system of g. ∆ can be decomposed into two classes; even

(bosonic) roots and (fermionic) roots. We denote the set of even (odd) roots as ∆0 (∆1).

∆i
+ (∆i

−) (i = 0, 1) represent the set of positive (negative) roots. Then the algebra g is

expressed as the direct sum g0⊕g1, where g0 is an even subalgebra generated by the even

roots and the Cartan part and the representation of g0 on the odd space g1 generated by

the odd roots, is completely reducible.

Let Eα (α ∈ ∆) and H i (i = 1, . . . , n) be Chevalley basis1 of g. If α ∈ ∆0 (∆1) Eα is

a bosonic (fermionic) generators. We note that H i are bosonic generators. They satisfy

the (anti-)commutation relations;

[Eα, Eβ]± = Nα,βEα+β,

[Eα, E−α]± =
±2α · H

α2
,

[H i, Eα]− = αiEα. (18)

The holomorphic representation of Lie superalgebra is defined on the space RΛ of functions

on G, whose element f satisfies ([24]):

f(ζg) = f(g), for ζ ∈ N− and g ∈ G,

1 For other type Lie superalgebras one must take the Cartan-Weyl basis due to the existence of the
zero norm roots.
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f(δg) = χΛ(δ)f(g), for δ ∈ H, (19)

where the character χΛ = exp(φ · Λ(H)) for δ = exp(φ · Λ). Consequently a function f

can be regarded as a function on N−. The representation σΛ of g on RΛ is defined as

σΛ(x)f(z) =
d

dt
f(zetx) |t=0 . (20)

An element of N− is parametrized as

z = exp(
∑

α∈∆+

ZαE−α), (21)

where Zα are bosonic (fermionic) coordinates for α ∈ ∆0
+ (∆1

+). Using the Baker-

Campbell-Haussdorff formula we can calculate the representation of the Lie superalgebra

explicitly. For the negative roots we find

σΛ(E−α) =
∂

∂Zα

+
1

2

∑
β∈∆+

N−β,−αZβ
∂

∂Zβ+α

+
∑
n≥2

B̃n

n!

∑
β1,...,βn∈∆+

N−β1,−β2−···−α · · ·N−βn,−αZβ1 · · ·Zβn

∂

∂Zβ1+···+βn+α

.(22)

The Cartan part becomes

σΛ(H) = Λ(H) +
∑

β∈∆+

βZβ
∂

∂Zβ

. (23)

For the positive simple roots we get

σΛ(Eα) = −2Λ · α
α2

Zα +
∑

β,β−α∈∆+

N−β,αZβ
∂

∂Zβ−α

− 1

2

∑
β∈∆+

2α · β
α2

ZαZβ
∂

∂Zβ

+
∑
n≥2

B̃n

n!

∑
β1,...,βn∈∆+

2α · βn

α2
N−β1,−β2−···−βn · · ·N−βn−1,−βnZαZβ1 · · ·Zβn

∂

∂Zβ1+···+βn

.

(24)

We must take care of the ordering of Zα’s in the present expressions because of the

existence of fermionic coordinates.
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We next discuss the affine Lie superalgebra ĝ. This algebra is generated by the bosonic

and fermionic Kac-Moody currents Jα(z) and the bosonic Cartan currents H i(z), which

obey the operator product expansion:

Jα(z)Jβ(w) =
Nα,βJα+β(w)

z − w
+ · · · ,

Jα(z)J−α(w) =
±2k/α2

(z − w)2
+

±2α · H(w)/α2

z − w
+ · · · ,

H i(z)Jα(w) =
αiJα(w)

z − w
+ · · · ,

H i(z)Hj(w) =
kδij

(z − w)2
+ · · · , (25)

where in the second formula +(−) should be taken for the bosonic (fermionic) currents,

and the structure constants Nα,β are non-zero integers for α + β ∈ ∆ and 0 otherwise.

In the affine case the coordinates Zα and their conjugate differentials ∂/∂Zα become a

pair of ghost fields Cα and Bα with conformal weights 0 and 1, respectively, where Cα and

Bα are bosonic for even α and are fermionic for odd α. In addition we replace the weight

Λ in the representation by −iα+∂ϕ(z) with α+ =
√

k + h∨ and h∨ is the dual Coxeter

number of g. For the currents corresponding to the positive simple roots, we must add the

term aα∂Cα, where aα is given as (4) in order to satisfy the correct operator expansions.

The general formulas for the currents can be expressed by replacing βα and γα of the affine

Lie algebra in eqs. (1) by Bα and Cα respectively and using the structure constants of

the Lie superalgebras. The screening currents can be also obtained in a similar manner.

In the following we often use βα (γα) for even roots α and ηα (ξα) for odd roots instead

of Bα (Cα). We also denote the fermionic currents Jα(z) as jα(z) for convenience.

Now we consider the affine Lie superalgebra B(0, n)(1). Firstly we give the simplest

example osp(1, 2)(1)(= B(0, 1)(1)). The algebra B(0, 1) has an odd simple root α1 with

α2
1 = 1. Other positive root is an even root which is equal to 2α1. We denote the fermionic

currents J±α1 by j± and the bosonic currents J±2α1 by J±(z) for simplicity. They are given
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as ([25]):

j+(z) = 2iα+ξ∂ϕ + γη − 2γβξ + (2k + 2)∂ξ, j−(z) = η − 2βξ,

J+(z) = iα+γ∂ϕ − γ2β +
k

2
∂γ + γηξ − (k + 2)ξ∂ξ, J−(z) = β,

H(z) = −iα+∂ϕ + 2βγ + ξη, (26)

where α+ =
√

k + 3. The operator product expansions become

j+(z)j+(w) =
4J+(w)

z − w
+ · · · , j−(z)j−(w) =

4J−(w)

z − w
+ · · · ,

j+(z)j−(w) =
2k

(z − w)2
+

2H(w)

z − w
+ · · · ,

J+(z)j−(w) =
−j+(w)

z − w
+ · · · , J−(z)j+(w) =

−j−(w)

z − w
+ · · · ,

J+(z)J−(w) =
k/2

(z − w)2
+

H(w)

z − w
+ · · · ,

H(z)H(w) =
k

(z − w)2
+ · · · ,

H(z)J±(w) =
±2J±(w)

z − w
+ · · · , H(z)j±(w) =

±j±(w)

z − w
+ · · · . (27)

The energy-momentum tensor is obtained as the Sugawara form

T (z) =
1

α2
+

[2 : J+J− + J−J+ : +
1

2
: H2 : −1

2
(: j+j− − j−j+ :)]

= −1

2
(∂ϕ)2 − i∂2ϕ

2α+

+ β∂γ − η∂ξ. (28)

¿From this the central charge c becomes

c = 1 − 3

α2
+

= 1 − 3

k + 3
=

k

k + 3
. (29)

The screening operator is given as

S(z) = (η + 2ξβ)(z)eiα−ϕ(z), (30)

where α− = −1/α+.
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A generalization to the case B(0, n)(1) is straightforward. The dimension of the algebra

B(0, n) is 2n2 + n (even) + 2n (odd). The root system of B(0, n) is described as follows.

Let ei (i = 1, . . . , n) span the orthonormal basis of Rn. The even simple roots are

αi = ei − ei+1, (i = 1, . . . , n − 1) and the odd simple root is αn = en. The set of positive

even roots ∆0
+ are composed of the elements:

ei − ej = αi + · · · + αj−1, (1 ≤ i < j ≤ n),

ei + ej = αi + · · · + αj−1 + 2αj + · · · + 2αn, (1 ≤ i ≤ j ≤ n). (31)

We note that the structure of the even roots is the same as that of Cn, namely even

subalgebra of B(0, n) is Cn. The set of odd positive roots ∆1
+ contains the elements:

ei = αi + · · · + αn, (i = 1, . . . , n). (32)

In the explicit matrix representation of Eα (α ∈ ∆) and H i (i = 1, . . . , n), the generators

of the algebra B(0, n) are given as

Eej−ei
= Ei,j − E2n+2−j,2n+2−i,

E−(ei+ej) = Ei,2n+2−j + Ej,2n+2−i, Eei+ej
= E2n+2−i,j + E2n+2−j,i, for i 6= j,

E−2ei
= Ei,2n+2−i, E2ei

= E2n+2−i,i,

E−ei
=

√
2(Ei,n+1 + En+1,2n+2−i), Eei

=
√

2(En+1,i − E2n+2−i,n+1),

αi · H = Ei,i − E2n+2−i,2n+2−i − Ei+1,i+1 + E2n+1−i,2n+1−i, (i = 1, . . . , n − 1)

αn · H = En,n − En+2,n+2, (33)

where Ep,q is the (2n + 1) × (2n + 1) matrix whose (a, b) elements are δa,pδb,q. Using this

basis we can compute the structure constants and get the expression of the Kac-Moody

currents explicitly. Here we give a non-trivial example of the Feigin-Fuchs representation

of the algebra B(0, 2)(1). The currents for the negative roots are

J−α1(z) = β1 −
1

2
ξ2η12 −

1

2
γ22β122 +

(
−γ122 −

1

6
γ1γ22 +

1

3
ξ2ξ12

)
β1122,
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j−α2(z) = η2 +
1

2
γ1η12 − 2ξ2β22 −

(
ξ12 +

1

2
γ1ξ2

)
β122 −

2

3
γ1ξ12β1122,

j−α1−α2(z) = η12 − ξ2β122 − 2ξ12β1122 −
1

3
γ1ξ2β1122,

J−α1−2α2(z) = β122 + γ1β1122, J−2α1−2α2(z) = β1122,

J−2α2(z) = β22 +
1

2
γ2β122 +

1

6
γ2

1β1122. (34)

The Cartan currents are

H(z) = −iα+∂ϕ(z) + α1γ1β1 + α22γ22β22 + α122γ122β122 + α1122γ1122β1122

+ α2ξ2η2 + α12ξ12η12. (35)

The currents for the positive simple roots are

Jα1(z) = (k +
3

2
)∂γ1 + iγ1α+α1 · ∂ϕ − γ2

1β1 +
(1

2
γ1ξ2 − ξ12

)
η2

+
(
−1

2
γ1ξ12 −

1

4
γ2

1ξ2

)
η12 +

(
−γ1122 −

1

12
γ2

1γ22 −
1

2
γ1γ122 +

5

6
γ1ξ2ξ12

)
β122

+
(
−γ1γ1122 −

1

6
γ2

1ξ2ξ12 −
1

12
γ3

1γ22 −
1

3
γ2

1γ122

)
β1122,

jα2(z) = (2k + 4)∂ξ2 + 2iξ2α+α2 · ∂ϕ − (2ξ12 + γ1ξ2)β1 − γ22η2 + 2ξ2γ22β22

− γ122η12 +
(
−1

2
γ1γ22ξ2 + ξ2γ122

)
β122 −

2

3
γ1γ122ξ2β1122. (36)

For the general B(0, n)(1) case let us write down only the Cartan currents and the

Sugawara form of the energy momentum tensor. The currents for the Cartan part are

H i(z) = −iα+∂ϕi(z) +
∑

α∈∆0
+

αiγαβα +
∑

α∈∆1
+

αiξαηα(z), (37)

where

α+ =
√

k + 2n + 1. (38)

The energy-momentum tensor is

T (z) = −1

2
(∂ϕ)2 − iρ · ∂2ϕ

α+

+
∑

α∈∆0
+

βα∂γα −
∑

α∈∆1
+

ηα∂ξα, (39)
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where ρ is defined as

ρ = ρ0 − ρ1, (40)

and ρ0 (ρ1) is half the sum of the positive even (odd) roots. In the orthogonal basis these

vectors for B(0, n) are expressed as ρ0 =
∑n

i=1(n + 1 − i)ei and ρ1 = 1
2

∑n
i=1 ei. Thus

ρ =
∑n

i=1(n+1/2− i)ei. Notice ρ is just half the sum of positive roots of Bn. The central

charge takes the form

c = n − 12ρ2

α2
+

+ 2(n2 − n) =
kn(2n − 1)

k + 2n + 1
, (41)

which agrees with the natural generalization of the central charge for affine Lie algebras

([23]);

c =
k sdimg

k + h∨ , (42)

where sdimg is a super dimension of g defined as dimg0 − dimg1. Actually this can

be explicitly shown for other affine Lie superalgebras by using the Freudenthal-de Vries

strange formula([22]):

ρ2 =
h∨ sdimg

12
. (43)

4 Quantum Hamiltonian Reduction of B(0, n)(1)

In this section we study the quantum hamiltonian reduction of the affine Lie superalgebra

B(0, n)(1). As was discussed in section 2, we deform the energy-momentum tensor T (z)

by the Cartan part H(z):

Tdeformed(z) = TWZNW (z) − ρ · ∂H(z), (44)

where ρ = ρ0 − ρ1. Under this deformation the conformal dimension of of the current

J−α(z) becomes 1 − ρ · α. In particular J−αi
(z) (i = 1, . . . , n − 1) and J−2αn(z) have

conformal weights 0. Therefore we may put the constraint such that these currents should

be equal to 1:

J−αi
(z) = 1, (i = 1, · · · , n − 1), J−2αn(z) = 1. (45)

13



However the current j−αn(z) corresponding to the negative simple root −αn has the

conformal dimension 1/2. To examine the structure of the reduced phase space we consider

the second class constraint ([25]) by introducing the fermionic auxiliary field χ(z) such as

j−αn(z) = 2χ(z). (46)

Then χ(z) should satisfy the operator product expansion;

χ(z)χ(w) =
1

z − w
+ · · · , (47)

because

j−αn(z)j−αn(w) =
4J−2αn(w)

z − w
+ · · · . (48)

This means that the fermionic auxiliary field χ(z) is a Majorana fermion. The conformal

dimensions of the ghosts Bα and Cα are 1 − ρ · α and ρ · α, respectively. In order to

accomplish a BRST gauge fixing, we introduce the ghosts (B̃α, C̃α) with weights (1 − ρ ·

α, ρ · α), where B̃α and C̃α are fermionic for even roots and bosonic for odd roots. After

the BRST gauge-fixing the total energy-momentum tensor becomes

Ttotal(z) = TWZNW (z) − ρ · ∂H(z) + TB̃,C̃ − 1

2
χ∂χ,

= −1

2
(∂ϕ)2 − iα0ρ · ∂2ϕ − 1

2
χ∂χ + {QBRST , ∗}, (49)

with α0 = 1/α+ − α+. This is the same as the Feigin-Fuchs representation of WBn

obtained by Fateev and Lukyanov ([9]), up to a BRST exact term.

We can get the bosonic W currents Wk(z) with spins k (k = 2, · · · , 2n) and the

fermionic current d(z) with a spin n + 1/2 from the B(0, n) type Miura transformation,

which is obtained by solving the equation:

(
iα0∂ +

n−1∑
i=1

Eαi
+ E2αn + χ(z)Eαn +

n∑
i=1

∂ϕi(z)(Ei,i − E2n+2−i,2n+2−i)
)
ψ = 0,

ψ =t (ψ1, · · · , ψ2n+1), (50)

14



for the components ψn+1 and ψ2n+1. The terms expressed by ϕi’s in the bosonic W

currents have the same forms as those obtained from the Cn type Miura transformation:

Rn(z) = (iα0∂ + ∂ϕ1) · · · (iα0∂ + ∂ϕn)(iα0∂ − ∂ϕn) · · · (iα0∂ − ∂ϕ1), (51)

because the even roots structure of the B(0, n) is equal to that of Cn. We also need

the terms including the fermion χ(z) for the closure of the WB algebra. The fermionic

current d(z) is given as the coefficient of ψn+1:

d(z) = (iα0∂ + ∂ϕ1) · · · (iα0∂ + ∂ϕn)χ(z). (52)

For n = 1 the current d(z) becomes the supercurrent with spin 3/2. The corresponding

coset model is the N = 1 minimal superconformal model. The screening currents, which

commute with the W-currents, are given as

s±αi
(z) = eiβ±αi·ϕ(z), for i = 1, . . . , n − 1,

s±αn
(z) = χ(z)eiβ±αn·ϕ(z). (53)

They are BRST equivalent to those of B(0, n)(1).

5 Conclusions and Discussions

In this paper we have discussed the relation between the quantum hamiltonian reduction

of the affine Lie superalgebra B(0, n)(1) and the B(1)
n coset model. We have shown that

the quantum hamiltonian reduction of B(0, n)(1) is equivalent to the WBn minimal coset

model introduced by Fateev and Lukyanov. We note that the null field structure does

not change under the quantum Hamiltonian reduction procedure.

For the quantum Hamiltonian reduction of the non-simply-laced types, there seems to

be no appropriate unitary coset model, although we have expected that rational conformal

field theories are always realized the GKO construction. The present construction suggests

the existence of another class of rational conformal field theories which may not be realized

15



by the GKO construction. It will be interesting to study further the structure of conformal

field theories of these types.

Motivated by the present observation one may ask if any coset conformal field the-

ory can be constructed from the quantum hamiltonian reduction. In order to answer this

question, we must find a suitable chiral algebra and the reduction. For WB-minimal mod-

els we have shown the chiral algebra is the affine Lie superalgebra B(0, n)(1). For other

non simply-laced types W -minimal models would be obtained by the Hamiltonian reduc-

tion of some suitable chiral algebras. If this procedure is possible for arbitrary conformal

field theories, we can treat any coset conformal field theories by a geometrical technique,

which gives the unified description of various conformal field theories. Furthermore in the

quantum Hamiltonian reduction various gauge-fixing procedure are possible, and give rise

to a variety of conformally invariant models ([26], [27]).

In the course of writing this paper the author noticed the paper by Ahn, Bernard

and LeClair ([28]), in which in the context of the supersymmetric Toda field theory the

relation between the B(0, n) Lie superalgebra and the B type coset models is discussed.
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