暗黒エネルギーとブラックホールと膨張宇宙1

原田知広

立教大学理学部

2007年5月28-30日 研究会:宇宙初期における時空と物質の進化@東大

¹前田秀基 (CECS)・B.J. Carr(ロンドン大) との共同研究

Dark Energy and Cosmological Black Holes

- Dark energy($\rho + 3p < 0$): Violation of SEC, Anti-gravity
- Phantom($\rho + p < 0$): Violation of DEC, Negative energy

Dark Energy/Phantom Accretion onto Black Holes

- Stationary accretion onto a Schwarzschild black hole (Babichev et al., PRL93,021102(2004))
 - Equation of state : $p = p(\rho)$
 - Accretion rate

$$\frac{dM}{dt} = -4\pi r^2 T_t^r = 4\pi A M^2 [\rho_{\infty} + p(\rho_{\infty})] \quad (G = c = 1)$$

- If $0 < c_s^2 < 1$, A = O(1) is determined by the continuity at the critical point.
- If $c_s^2 < 0$, the hydrodynamical instability will cause the growth of the accretion velocity up to c and then A = 4.
- If $\rho_{\infty} + p(\rho_{\infty}) > 0$ (ordinary matter and dark energy), $\dot{M} > 0$.
- If $\rho_{\infty} + p(\rho_{\infty}) < 0$ (phantom), $\dot{M} < 0$.
- But the Universe is expanding and the density decreases in time!

Simplistic Argument of Black Hole Growth

• $\rho_{\infty} \simeq p_{\infty} \simeq 1/t^2$ in the Universe

$$\frac{dM}{dt} \simeq \frac{M^2}{t^2}$$

Solution (Zeldovich & Novikov, Sov.Astron.10,602(1967))

$$M = \frac{M_0}{1 - \alpha M_0 (t_0^{-1} - t^{-1})}, \quad \alpha = O(1)$$

- Catastrophic growth solution $M \propto t \simeq H^{-1}$
 - Radiation (Zeldovich & Novikov 1967)
 - Quintessence (Bean & Magueijo, PRD66,063505(2002))
- Could be the origin of supermassive black holes

Self-Similar Cosmological Black holes

- The power-law flat Friedmann is self-similar.
- Self-similar spacetimes
 - Homothetic Killing vector (cf. Killing vector $\mathcal{L}_{\xi}g_{\mu\nu}=0$)

$$\mathcal{L}_{\xi}g_{\mu\nu}=2g_{\mu\nu}$$

- Similarity horizon (cf. Killing horizon)
- Conformally static metric ($\tau = \ln |t|, z = r/t$)

$$ds^2 = e^{2\tau} ds_{\text{static}}^2$$

- Einstein eq. reduces to ODEs wrt z = r/t (cf. wrt r for static case)
- Self-similar cosmological black holes
 - Asymptotic to the flat Friedmann at spatial infinity
 - Every physical length scales as the cosmological time.

$$r_{\rm BHEH} \propto l_{\rm H} \propto t$$

Nonexistence for Positive Pressure Case

- Search for a self-similar solution in which a black hole event horizon is embedded in the flat Friedmann universe
- Nonexistence for positive pressure (decelerated expansion)
 - Weak discontinuity at the critical point (Carr & Hawking, MNRAS168,399(1974))
 - Must be surrounded by an exact Friedmann. (Maeda et al., PRD66,087501(2002))
 - Radiation (Carr & Hawking 1974)
 - Perfect fluid $p = (\gamma 1)\rho$ ($1 \le \gamma < 2$) (Carr, PhD thesis(1976))
 - Stiff fluid ($p = \rho$) (Bicknell & Henriksen, ApJ225,237(1978))
 - Scalar field with or without potential (Harada et al. PRD74,024024(2006))
 - Exception: existence for a highly contrived matter model with stiff fluid (or scalar field) converting to null dust (Bicknell & Henriksen 1978, Harada et al. 2006)

Self-Similar Solutions with Dark Energy

- Simple dark matter model: $p = (\gamma 1)\mu \ (0 < \gamma < 2/3)$
- Exact self-similar solutions
 - Friedmann solution
 - Accelerated expansion
 - Event horizon, no particle horizon, dS like null infinity
 - Kantowski-Sachs solution
 - Physical only for $0 < \gamma < 2/3$
 - The area of the sphere t = const, r = const does not depend on r.
 - Extendible beyond $r = \infty$ to negative r
 - No static solution in contrast to the positive pressure case

Asymptotic Solutions

The asymptotic analysis of the ODEs gives 8 asymptotic solutions.

Name	Z	#param	Continuation	Structure	Distance
F	±0	1	n/a	Spacelike	∞
QF	±0	1	n/a	Spacelike	∞
QF	±∞	1	n/a	Timelike	0
QS	±∞	2	$t = \pm 0$	Spacelike	∞
QKS	±∞	2	$r = \pm \infty$	Timelike	Intermediate
CV	±∞	1	n/a	Timelike	∞
PMS	Z *	2	n/a	Spacelike	0
NMS	Z*	2	n/a	Timelike	0

Q=Quasi, CV=Constant Velocity, PMS=Positive-Mass Singular, NMS=Negative-Mass Singular

Numerical Analysis

- EOS parameter: $\gamma = 1/3$ or $p = -(2/3)\rho$
- 1-parameter family of asymptotically Friedmann solutions at large distance (z = +0)
- Integrate the ODE from z = +0, which has no critical point.
- If the solution reaches $z = +\infty$ with QS or QKS behaviour, the solution is extended to negative z region.
- A variety of solutions, including naked singularities, black holes and wormholes.

Cosmological Black Hole Solutions

- There is a one-parameter family of solutions.
- Asymptotic structure: F-QKS-PMS
- An upper bound on the black hole horizon radius

$$0 < \frac{r_{\rm BHEH}}{l_{\rm H}} \lesssim 0.36.$$

Why Does the Black Hole Grow Self-Similarly?

- Black hole attracts surrounding dark energy.
- The density near the black hole gets higher.
- For $p = (\gamma 1)\rho$ (0 < γ < 2/3), the pressure gradient force pushes matter towards higher density region.
- This helps the dark energy to fall into the black hole.
- For very large scale, the repulsive gravity of dark energy may suppress the instability.
- In short, hydrodynamical instability drives the catastrophic growth.

Cosmological Wormhole Solutions

- The F-QKS-F is a unique solution, in which the wormhole throat connects two identical Friedmann universes.
- Various dynamical wormhole solutions, connecting the flat Friedmann and another universes
- They are NOT dynamical wormholes defined by Hayward (IJMPD8,373(1999)) with timelike trapping horizons.
- Our definition for wormhole throats is just a two-speher of positive minimal area on a spacelike hypersurface.

Summary

- $\dot{M} > 0$ due to dark energy accretion, while $\dot{M} < 0$ due to phantom accretion.
- Nonexistence theorems for self-similar black holes for positive pressure
- We study self-similar solutions for dark energy with $p=(\gamma-1)\rho$ $(0<\gamma<2/3)$.
 - Exact solutions: Friedmann and KS solutions but no static solution
 - 8 possible asymptotic behaviours, among which QKS and QS are extendible beyond $z=\infty$
 - 1-parameter family of cosmological black holes, implying effective accretion of dark energy
 - A variety of dynamical wormholes, one of which connects two identical Friedmann universes