LHCと宇宙物理

"Dark Side" と"Extraキワモノ"に重きを置いて

- 1. LHC/ATLAS/CMS 概略と現状
- 2. 超対称性研究
- 3. 余剰次元研究
- 4. スカラー場(まあHiggsです)
- 5. 纏め

物語の舞台は、ジュネーブ郊外のCERN 地下100m 円周27kmのリング

Bending dipole magnet 5mの巨大二重魔法瓶

内側1.9K cold mass (世界最大の Heat Exchanger Pipe Beam Pipe 冷たい巨大構造体) Superconducting Coils LHC DIPOLE : STANDARD CROSS-SECTION Helium-II Vessel Spool Piece HEAT EXCH/ Bus Bars Superconducting Bus-Bar SUPERINSU Iron Yoke UPERCON REAM PIPE Non-Magnetic Collars ACUUM VE REAM SCR Vacuum Vessel Quadrupole UXILIAR Bus Bars **Radiation Screen** SHRINKING Thermal Shield THERMAL NON-MAGN The IRON YOKE 15-m long Auxiliary Bus Bar Tube LHC cryodipole SUPPORT Instrumentation Protection Feed Throughs Diode ヒートシンク

NbTi 超伝導1.9K(He温度)まで冷やして、B=8.3T (7TeV) (injection 0.5T at 450GeV) コイルー>磁場を上下方向に発生させている。 PPなので、逆向きの磁場がふたつ必要

(大きくて強い磁石!) バイプロダクト:CAST(solar Axion探索)

8.3T 15mなんてそんじょそこらにない。 Axion は、磁場中でγに化ける。 確率(BL)²

太陽内でaxionが太陽温度 KeVの運動 エネルギーで放射。

プリマコフ、コンプトン 過程で太陽から KeVのエネルギー を持ったAxionが放出

LHCの予定

4重極磁石の冷却事故 約2-3ヶ月遅れ (ババを抜いたのはFNAL) 今年の実験はなし

晚秋-冬 2007 Machine and Detectors Ready 冬に冷却試験など \sqrt{s} =14TeV Commissioning Run 4月 2008 \sqrt{s} =14TeV Physics Run 6、7月 2008 2008年の終わりには 約 L=0.5-1 fb⁻¹ (SUSY up to 1.5 TeV, BH) 2009年の終わり L = 10 fb⁻¹ (10³³) (Higgs, SUSY up to 2TeV) 2010,11年以降 Design Luminosity (100fb⁻¹/年間) Detail study Higgs/SUSY/LED/ "SM" 2013,14?シャットダウン Update SuperLHC計画 (1000 fb-1/年間) (まだ決定していない。Physだけじゃなくて、大人の世界が決める)

LHC Luminosity Profile

僅かL=10fb⁻¹(2009)でも膨大な統計量のデーターが観測

代表的な過程	Event rate 2×10 ³³	初めの1年半で L=10fb ⁻¹	他との比較 (2007年までの積算)
W→ev	30Hz	10 ⁸	10 ⁷ Tevatron-2
Z→ee	3Hz	10 ⁷	10 ⁷ Tevatron-2
tt	1.6 Hz	10 ⁷	10 ⁴ Tevatron-2
$bb \cdot P > 10 CoV$	200KHz	2×10 ¹²	
DD. P _T >10Gev	(HLT 10Hz)	(10 ⁸ inc. di-µ)	
Higgs(130GeV)	200個/時	5×10⁵	
SUSY(1TeV)	20個/時	5×10 ⁴	

この表が示す様に、LHCは、**Top-factory、 B-factory**であり、 同時に Higgs/SUSY factoryである。 そして後で示すようにDark Matter factoryでもある

SM事象も非常に豊富:BGになるが、Calibration やControl sampleとして不可欠

ATLAS Detector

・兎に角、でかいDetectors: バランス 優先のパフォーマンス
・Accordion Shape of L.Ar detectors カロリメータ (放射線耐性、奥行き情報)
・Large air-core toroidal magnet ミューオンシステム

バレル側はほぼ完成 エンドキャップ側を 組み立て中

今年中に完成(予定)

すでに、稼働 Detector commissioning は始まっていて "宇宙線"は捕らえている

Dead Channel: 0.2% SCT Noise hit $\sim 10^{-4}$

Tracker calorimeter

CMS検出器

[2] SuperSymmetry

TeV Scale SUSY 御利益

- GUTを実現-> (宇宙)物理へ大きなインプット
- Cold dark matter :
- 理論的な御利益は枚挙にいとまがない:

[2-0] m SUGRAの簡単な纏め

同じ量子数を持っている状態は混合し、 質量のeigenstate を作る。

Chargino (charged wino + charged higgsino) Neutralino(bino, neutral wino+ neutral higgsino)

$$\begin{array}{ccc} M_z \sin\theta_W \cos\beta & M_z \sin\theta_W \sin\beta \\ M_z \cos\theta_W \cos\beta & -M_z \cos\theta_W \sin\beta \\ 0 & -\mu \\ -\mu & 0 \end{array} \right| \begin{pmatrix} \tilde{B}^0 \\ \tilde{W}^0 \\ \tilde{H}^0_1 \\ \tilde{H}^0_2 \end{pmatrix}$$

が鍵となる。 -> LHCでどのくらい決められるか?

CharginoもM₂, µの混合状態でWino-like とhiggsino-like

 $ilde{\chi}^0_{\scriptscriptstyle A}$

その他の粒子の性質 Running effect 共通@GUT 結合が強い程太る Mass@EW $m^{2}(\tilde{g}) = (2.8m_{1/2})^{2}$ $m^{2}(\tilde{u}_{L}) = m_{0}^{2} + 6.28m_{1/2}^{2} + 0.35D$ $m^2(\tilde{u}_R) = m_0^2 + 5.87m_{1/2}^2 + 0.16D$ $m^{2}(\tilde{d}_{T}) = m_{0}^{2} + 6.28m_{1/2}^{2} - 0.42D$ $m^2(\tilde{d}_R) = m_0^2 + 5.82m_{1/2}^2 - 0.08D$ $m^2(\tilde{e}_1) = m_0^2 + 0.52m_{1/2}^2 - 0.27D$ $m^2(\tilde{e}_R) = m_0^2 + 0.15m_{1/2}^2 - 0.23D$ $m^2(\tilde{v}_1) = m_0^2 + 0.52m_{1/2}^2 + 0.50D$ $\left(D = M_Z^2 \cos 2\beta < 0(Higgs)\right)$ これはモデルによる

LとR:SU(2)に対する電荷を持っているか 否かでfermionも2つに分類される。 それ以外の量子数は同じ。 SU(3):強い力 一番太る SU(2):少し太る L>R

•Coloured partciles $(ilde{g}, ilde{q})$ は重い

- ・この関係式は(1),(2)に共通
 (3)に対しては、m_{1/2}の係数が
 予言出来なくなる
- ・第3世代の ç は軽い。
 (Yukawa+LR mixingの効果)
 DMとの関係では τが大切

 $m^{2}(\tilde{\tau}) = \begin{bmatrix} m_{0}^{2} + 0.52m_{1/2}^{2} + m_{\tau}^{2} - 0.27D & -m_{\tau}(A_{\tau} + \mu tan\beta) \\ -m_{\tau}(A_{\tau} + \mu tan\beta) & m_{0}^{2} + 0.15m_{1/2}^{2} + m_{\tau}^{2} - 0.23D \end{bmatrix}$ tanßが大きいと, **t**が大切

[2-1] LHCでの生成過程 QCDで出来る $(\tilde{g}\tilde{g}, \tilde{g}\tilde{q}, \tilde{q}\tilde{q})$

just strong interaction (a_s): cross-sectionが大きい model independent except for mass (LRやflavorの縮退度合い)

$m(\tilde{q}) = m(\tilde{g}) = 0.5TeV$	σ∽100pb ^{ĨĨ} が主
$m(\tilde{q}) = m(\tilde{g}) = 1TeV$	σ∽3pb
$m(\tilde{q}) = m(\tilde{g}) = 2TeV$	σ∽20 fb <i>ũũ,ũἆ</i>

[2-2]崩壊過程 $ilde{g}, ilde{q}$ のdecay table

ここら辺はあまりモデルによらない。Massの関係やB,Wとχの関係、第3世代などがモデル依存 Runningの方程式:squarkの方が重い(第3世代を除いて)、DMまで気にするとm0が小さい

т-IDが大切。Higgsino成分が多くなると、然り。

W/Zはmulti-Jetを要求することで 10-3 (0.2⁴) になっている。 検出器がちゃんと動けば、QCD(bb,cc)は効かない One lepton mode

レプトンを要求するとBGが落とせる Topが主なBGで予言能力も高い ー> excessが綺麗に見える

2個レプトンを要求すると BGは更に減る 信号も少ない:モデル依存性が 強くなって行く

[2-5] 発見能力(5σ)

 mE_T +Jets+Photon(s)

GMSUSY signal $M(\tilde{g}) \sim 700 GeV$ $M(\tilde{q}) \sim 1 TeV$

Njet(P_T >50GeV)>=3 mE_T>100GeV P_T_LJ ,2nd Jet >100GeV 2photons are required GM Nm=1 Nu1→γĜ

Main Bg is top-pair in which W decays into ev with hard FSR Almost BG free (Nph>=2) and this is clean signature of GM SUSY (gluino mass upto 1.6 TeV can be discovered with L=1fb⁻¹) LHCの能力がモデルに著しく依存したSUSYしかカバーできないか?

例として、Bulk point

			Errors	
Variable	Value (GeV)	Stat. (GeV)	Scale (GeV)	Total
$m_{\ell\ell}^{max}$	77.07	0.03	0.08	0.08
$m_{\ell\ell\sigma}^{max}$	428.5	1.4	4.3	4.5
$m_{\ell g}^{low}$	300.3	0.9	3.0	3.1
m ^{high}	378.0	1.0	3.8	3.9
min	201.9	1.6	2.0	2.6
$m_{\ell\ell b}^{min}$	183.1	3.6	1.8	4.1
$m(\ell_L) - m(ilde{\chi}_1^0)$	106.1	1.6	0.1	1.6
$m_{\ell\ell}^{max}(ilde{\chi}_4^0)$	280.9	2.3	0.3	2.3
$m_{\tau\tau}^{max}$	80.6	5.0	0.8	5.1
$m(\tilde{g}) - 0.99 imes m(ilde{\chi}_1^0)$	500.0	2.3	6.0	6.4
$m(ilde{q}_R) - m(ilde{\chi}_1^0)$	424.2	10.0	4.2	10.9
$m(ilde{g})-m(ilde{b}_1)$	103.3	1.5	1.0	1.8
$m(\tilde{g}) - m(\tilde{b}_2)$	70.6	2.5	0.7	2.6

DM particle mass m_{χ} (GeV)

Recoil 実験と直接比較が可能にな 赤 最新Xenon10(Xe2相)

Universal Extra Dimension: 全てのSM粒子にKK excited Mode

基本的にSUSYと同じトポロジー 一つ高いexcitation stateが SUSY パートナー

区別は? -> spinを見る (Z* spin 1)

崩壊分岐比や結合定数の測定 -> ほぼ不可能

3rd Generation(stop, sbottom) が軽くなる Yukawa結合する higgsino成分へ 2段増える

[3] 余剰次元

階層問題 Plank Scale vs EW scale

この問題をSUSYはcancelで保証: 余剰次元がある場合: TeVの余剰次元でPlanck を説明、Plank Scaleの余剰次元のwarp factorで EW scaleを説明

(1) KK excitation of Graviton: (small Extra dim)

(2) BHやモノジェット(LED)

我々は、3次元の膜の上に住んでいる!?

 M_1 :1-10TeV first excitation stateの質量 数TeV $\Lambda_{\pi} = 10-100$ TeV(coupling) $k/M_{pl}=0.01-0.1$ (3parameterは独立でない)

Coupling $1/\Lambda_{\pi}$

KK Gravitonが生成される

pp→G* 生成段面積 m(G*)=2TeV σ=10fb (k/M_{pl}=0.01) もし、k/M_{pl}が 大きいとσが増える

分岐比は"民主的" すべてに等しく 後は自由度 (spin,flavor,color)

$pp \rightarrow G^* \rightarrow e+e-$ が一番いいチャンネル: Trackの分解能 $\Delta p/p \sim p$ で高い領域では悪くなる(µ駄目) カロリメータ分解能 $\Delta E/E \sim 1/SQRT(E)$ (統計) で良くなる gg $\rightarrow G^* \rightarrow \gamma\gamma$ の角度分解能がBGに近くなる

ちゃんと Spin2が 観測できて、 G*であることが 分かる。 3-2 TeVスケールの余剰次元 (Large ED) (Black Hole や KK-Graviton)

If gravity propagates in 4 + n dimensions, a gravity scale $M_D \approx 1$ TeV is possible \rightarrow hierarchy problem solved

at large distance

 $M_{\rm Pl}^2 \approx M_{\rm D}^{n+2} R^n$

n, R = number and size of extra-dimensions

Mp(Planck scale ~TeV) 隠れた次元n

Rsより小さいdでpartonが 衝突すると BHができる。 断面積が大きい。 (7,8TeV以下年間1万個以上)

衝突するパートンの不変質量 M_{BH} (Black Holeの質量)

 $R_{\rm S} = \frac{1}{\sqrt{\pi}M_P} \left[\frac{M_{\rm BH}}{M_P} \left(\frac{8\Gamma(\frac{n+3}{2})}{n+2}\right)\right]^{\frac{1}{1+n}}$

古典近似を使って良いTHSが? dơ/dM_{BH} (nb/TeV) CTEQ5L 10 solid: n=3, M_p =1,3,5,7 TeV dash: n=5, M_p =1 TeV dot : n=7, M_p=1 TeV M_{BH}/M 10 10 10 10 10 10 10 10 10 2 4 6 8 12 M_{BH} (TeV)

出来たBHは、安定化の後 Hawking Radiationで蒸発。 $T_{H} = M_{P} \left[\frac{M_{P}}{M_{BH}} \left(\frac{n+2}{8\Gamma((n+3)/2)} \right) \right]^{\frac{2}{1+n}}$ $\frac{dN}{dE} \propto \frac{(E/T_{H})^{2}}{\exp(E/T_{H}) + c}$

るいeventが特徴)

Particle E -> 黒色輻射 ->温度が決まる はずだか実験的に難しい。

Gは狭い領域(TeV)⁻¹強い力 Gが高いエネルギーのgに結合

Events for HL, 100 fb⁻¹ for $E_T^{jet} > 1$ TeV

$jZ(\nu\nu)$	$jW(\tau\nu)$	$jW(e\nu)$	$jW(\mu\nu)$
523	151	12	14

	δ	M_D (TeV)	Events	$S_{max} = S/\sqrt{B}$
	2	5	1430	61.4
		7	366	13.8
		9	135	5.1
	3	5	705	26.7
		7	131	5.0
00	4	5	391	14.8
1)		7	53	2.0

[4]スカラー場: HIGGS場

自発的対称性の破れとスカラー場 (EW Higgsがインフラトンではないですが) 質量の起源を探る(宇宙の主役ではないですが)

より高い対称性の状態から、自発的に対称性が破れて、今の「多彩な宇宙の構造」が作られた。 冷えることでー> 対称性の破れ:

この場スカラー場を探る

[4-1] SM Higgs 生成過程 LHC

LEP でのSM精密測定 M(H)=115-200GeV(95%CL)

4*5=20通り

SM Higgsの研究で有効なチャンネルの纏め

生成過程	崩壊過程	有効な領域とその効能		
Gluon Fusion	Η-> γγ	110-140GeV	<mark>発見</mark> Mass 測定 spin=0の傍証	
	H -> ZZ-> 4 I	140-1000	<mark>発見・</mark> Mass, spin, coupling測定	
	H-> WW	130-170 GeV	発見	
	Η-> τ τ	110-140GeV	<mark>発見・</mark> Mass, coupling測定	
Vector Boson	H -> WW	130-200GeV	<mark>発見</mark> •W coupling測定	
Fusion (鍵のチャンネル)	Η-> γ γ	110-140GeV	<mark>発見</mark> Mass測定	
ttH	H-> bb	110-130GeV	Ytの測定($multiple$ Lいチャンネル、)	

[2] VBF: H $\rightarrow \tau \tau$ (Yukawa結合)

Backgroundとsignalの形が違う。DYのMzのpeakの横 で綺麗に区別がつく。
 ての再構成にmissing情報(b-tagは使ってない)-> missing Et の研究が鍵

[3] $H \rightarrow ZZ^{(*)} \rightarrow 4$ leptons

4レプトンの不変質量 非常に細くて綺麗 Irreducible BG qq_bar → ZZ^{*} → 4I(連続分布) Reducible BGs are tt & Zbb (Bのsemileptonic decayをレプトンとミス) Isolation impact parameterを厳しく

M(H)<130GeV & M(H)=170GeV (Branching small) 以外は綺麗 CP, Spin of Higgs を決めることが出来る。

SM Higgsの発見能力

黄色(H->γγ)がもっとよくなる。(jetの結果入れてない) (5σ @L=10fb⁻¹ほど)

Higgs Mass と coupling 測定 (L=300fb⁻¹)

LHC : end of 2010(L=30fb⁻¹)

SUSY 2.5-3TeV までOK -> SUSYの厳しいテスト Higgs OK -> 真空の相転移シナリオのcriticalなテスト ED KK excitation 2-3TeV BH Mpl=2-5TeV Little Higgs, W'なども探ることが可能

Dark Sideの"素粒子的な解釈の"進むべき方向指針

Dark Energyについて"直接"何か出来るか?

Table 8: Expected numbers of signal and background events after all cuts for the $gg \rightarrow HH \rightarrow 4W \rightarrow \ell^+ \ell'^+ 4j$ fi nal state, for $\int \mathcal{L} = 6000 \text{ fb}^{-1}$.

m_H	Signal	$t\bar{t}$	$W^{\pm}Z$	$W^{\pm}W^{+}W^{-}$	$t\bar{t}W^{\pm}$	$t\bar{t}t\bar{t}$	S/\sqrt{B}
170 GeV	350	90	60	2400	1600	30	5.4
200 GeV	220	90	60	1500	1600	30	3.8

Vector Boson Fusion過程 (VBFの提案 1998 Zeppenfeld et al.)

クォークから放出されたゲージ粒子の融合からヒッグスが生成される。

Vector Boson Fusion過程の特徴

1-3 Promising event topologies with mE_{T} are listed:

Jet multi (high Pt)	Additional obj.	Favored scenario	Dominant SM background processes	
	No lepton	SUGRA,AMSB, Heavy $ ilde{q}$	QCD(light & bb/cc) $t\bar{t}(\rightarrow b\bar{b}q\bar{q}\tau\nu)$ Z(->nunu) and W(->taunu)	
High	One lepton	SUGRA,AMSB, Heavy $ ilde{q}$	$t\bar{t}(\rightarrow b\bar{b}q\bar{q}\ell\nu)$ W(->taunu)	
Multiplicity Nj>=3,4	Dilepton,3L	SUGRA,AMSB, GMSB (Nm>1)	OS: $t\bar{t} \rightarrow b\bar{b}\ell\nu\ell\nu$ SS,3L ZW,ZZ $t\bar{t} \rightarrow b\bar{b}\ell\nu\ell\nu$	
	Tau (ditau)	Large tanβ, GMSB (Nm>1)	W (->taunu) $t\bar{t}(\rightarrow b\bar{b}q\bar{q}\tau\nu)$	
	ΥY	GMSB (Nm \sim 1) $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$	Almost BG Free $t\bar{t}(\rightarrow b\bar{b}evev)$ FSR	
Low	No lepton	Heavy \widetilde{g} KK Graviton	Z(->nunu) W(->taunu)	
Multiplicity Nj∽1,2	One lepton	Heavy $~~\widetilde{g}$ Top like particle LH(W'Z')	$W, Z \qquad t\bar{t} (\rightarrow b\bar{b} \ell \nu \ell \nu)$	
No iot	One Lepton	W'	W	
Nj = 0	Dilepton,3L	Direct $ ilde{\chi}$	WW,WZ,ZZ WZ main for 3L	

(Black shows various SUSY models and Blue non-SUSY models)

[4-4] Understanding of the background processes

Background is estimated with "real data itself" (not estimated with MC): We have good control samples of $Z(\rightarrow ee/mumu)$ +jets, $W(\rightarrow lv)$ +jets and $tt \rightarrow bblvqq$ with $M_T < M_W$. From them, the background of $Z(\rightarrow vv), W(\rightarrow lv)$, tt with large mE_T & M_T>M_W) can be estimated. For examples: these four plots show mE_T spectra for various processes

Without SUSY signal With **1TeV SUSY signal** Background could be estimated with real data itself with accuracy of about 50%

With L=1fb⁻¹

 \tilde{q}, \tilde{g} Up to 1.6TeV

(2TeV for 95%CL exclusion) These do not strongly depend on model: Important parameters are masses of \tilde{q}, \tilde{g} and the mass difference between them and LSP(>= 400GeV)

 $\tilde{g} \sim 1.6 \text{TeV}$ $\tilde{\chi}_1^{\pm} \approx 500 \text{GeV}$ $\tilde{\chi}_1^0 \approx 250 \text{GeV}$

Naïve GUT assumption Gaugino-like

One Tau BG process: Top & W contribute:

One Tau

