LHCと宇宙物理

"Dark Side" と"Extraキワモノ"に重きを置いて

- 1. LHC/ATLAS/CMS 概略と現状
- 2. 超対称性研究
- 3. 余剰次元研究
- 4. スカラー場(まあHiggsです)
- 5. 纏め

物語の舞台は、ジュネーブ郊外のCERN 地下100m

円周27kmのリング

Bending dipole magnet

Beam Pipe

Heat Exchanger Pipe

そこには、 15mの巨大二重魔法瓶

内側1.9K cold mass (世界最大の 冷たい巨大構造体)

NbTi 超伝導1.9K(He温度)まで冷やして、B=8.3T (7TeV) (injection 0.5T at 450GeV) コイルー>磁場を上下方向に発生させている。 PPなので、逆向きの磁場がふたつ必要

(大きくて強い磁石!) バイプロダクト: CAST(solar Axion探索)

プリマコフ、コンプトン 過程で太陽から KeVのエネルギー を持ったAxionが放出

Fig. 22. Calculated spectrum of solar axions.

8.3T 15mなんてそんじょそこらにない。 Axion は、磁場中でγに化ける。

確率(BL)^2

太陽内でaxionが太陽温度 KeVの運動 エネルギーで放射。

LHC加速器

一周27 km LHC 地下トンネル, 8.3T超伝導磁石 15mの1232 本 ひきつめる。

LHCの予定

4重極磁石の冷却事故 約2-3ヶ月遅れ (ババを抜いたのはFNAL) 今年の実験はなし

晚秋-冬 2007 Machine and Detectors Ready 冬に冷却試験など √s=14TeV Commissioning Run 4月 2008 √s=14TeV Physics Run 6、7月 2008 2008年の終わりには 約 L=0.5-1 fb⁻¹ (SUSY up to 1.5 TeV, BH) 2009年の終わり L = 10 fb⁻¹ (10³³) (Higgs, SUSY up to 2TeV) 2010,11年以降 Design Luminosity (100fb-1/年間) Detail study Higgs/SUSY/LED/ "SM" 2013,14?シャットダウン Update SuperLHC計画 (1000 fb-1/年間) (まだ決定していない。Physだけじゃなくて、大人の世界が決める)

LHC Luminosity Profile

 $0.5 \sim 1 \text{ fb}^{-1}$ by the end of 2008

僅かL=10fb-1(2009)でも膨大な統計量のデーターが観測

代表的な過程	Event rate 2×10 ³³	初めの1年半で L=10fb ⁻¹	他との比較 (2007年までの積算)	
W→ev	30Hz	108	10 ⁷ Tevatron-2	
Z→ee	3Hz	10 ⁷	10 ⁷ Tevatron-2	
tt	1.6 Hz	10 ⁷	10 ⁴ Tevatron-2	
bb: D >10CoV	200KHz	2×10 ¹²	109 Palla	
bb: P _T >10GeV	(HLT 10Hz)	(10 ⁸ inc. di-μ)	10 ⁹ Belle	
Higgs(130GeV)	200個/時	5×10 ⁵		
SUSY(1TeV)	20個/時	5×10 ⁴		

この表が示す様に、LHCは、Top-factory、B-factoryであり、 同時に Higgs/SUSY factoryである。 そして後で示すようにDark Matter factoryでもある

SM事象も非常に豊富: BGになるが、Calibration やControl sampleとして不可欠

ATLAS Detector

Resolution (Pt=100GeV)

e, γ 1.3%Muon 2%Jets 8%

 B_z -> P_T -> Φ B_{ϕ} -> P_z ->eta low Ptでも

- •兎に角、でかいDetectors: バランス 優先のパフォーマンス
- •Accordion Shape of L.Ar detectors カロリメータ (放射線耐性、奥行き情報)
- •Large air-core toroidal magnet ミューオンシステム

バレル側はほぼ完成 エンドキャップ側を 組み立て中

今年中に完成(予定)

すでに、稼働 Detector commissioning は始まっていて "宇宙線"は捕らえている

Dead Channel: 0.2% SCT Noise hit ∽10-4

Tracker calorimeter

CMS検出器

PbW0₄

Lead Tungstate crystal SIC-78
from China

Resolution (Pt=100GeV)

e, γ 0.9%Muon 2%Jets 12%

H=15m L=22m (about half of ATLAS) W=12,500ton (twice of ATLAS) 鉄のかたまり

- •4T(強力) Solenoid Magnet
- PbWO₄ scintillator e/gammaに賭けた (高いE resolution)

[2] SuperSymmetry

TeV Scale SUSY 御利益

- GUTを実現-> (宇宙)物理へ大きなインプット
- Cold dark matter :
- 理論的な御利益は枚挙にいとまがない:

[2-0] m SUGRAの簡単な纏め

5つのパラメター: $m_o, m_{1/2}, tan \beta, A_0, sign(\mu)$ (mass @GUT) (VEV) (scalar 3点) (Higgsino mass)

-般的な傾向

- •Coloured partciles (\tilde{g}, \tilde{q}) は重い
 - •第3世代の \tilde{f} は軽い。(Yukawa+LR mixingの効果) $\tilde{\chi}_1^0$ はLSPで安定(R-parity) Cold DMの良い候補

 - •Higgsino mass (|µ|) > 0.8m_{1/2}(Wino) (m₀>>m_{1/2}の場合以外)

$$\stackrel{\rightarrow}{}$$
 $\tilde{\chi}_{1}^{0} \approx \tilde{B}^{0}, \tilde{\chi}_{2}^{0} \approx \tilde{W}^{0}, \tilde{\chi}_{1}^{\pm} \approx \tilde{W}^{\pm}, \tilde{\chi}_{3,4}^{0}, \tilde{\chi}_{2}^{\pm} \approx \tilde{H}$ (次のページ)

大事なのはこの二つ

GM Gravitino $ilde{G}$: **AM** Wino $ilde{W}^0$ LSP

Λ: braking scale m1/2, m0タキオン回避

Mm メッセンジャー スケール

KK Universal Extra Dimension (gamma KK n=1 γ LSP)

ごちゃごちゃあっても、 基本的なイベント・トポロジーは同じ(大筋で同じ)

Chargino/ Neutralino

同じ量子数を持っている状態は混合し、 質量のeigenstate を作る。 これが、

Chargino (charged wino + charged higgsino) Neutralino(bino, neutral wino+ neutral higgsino)

$$\begin{bmatrix} M_1 & 0 \\ 0 & M_2 \\ -M_Z sin\theta_W cos\beta & M_Z cos\theta_W cos\beta \\ M_Z sin\theta_W sin\beta & -M_Z cos\theta_W sin\beta \end{bmatrix}$$

$$\begin{bmatrix} M_1 & 0 & -M_Z sin\theta_W \cos\beta & M_Z sin\theta_W sin\beta \\ 0 & M_2 & M_Z \cos\theta_W \cos\beta & -M_Z \cos\theta_W sin\beta \\ -M_Z sin\theta_W \cos\beta & M_Z \cos\theta_W \cos\beta & 0 & -\mu \\ M_Z sin\theta_W sin\beta & -M_Z \cos\theta_W sin\beta & -\mu & 0 \end{bmatrix} \begin{pmatrix} \tilde{B}^0 \\ \tilde{W}^0 \\ \tilde{H}_1^0 \\ \tilde{H}_2^0 \end{pmatrix}$$

Mass eigenstate
$$\begin{pmatrix} \tilde{\chi}_1^0 \\ \tilde{\chi}_2^0 \\ \tilde{\chi}_2^0 \\ \tilde{\chi}_3^0 \\ \tilde{\chi}_4^0 \end{pmatrix}$$
 1. $\begin{pmatrix} \tilde{\chi}_1^0 \\ \tilde{\chi}_1^0 \end{pmatrix}$ がLSP(Lightest stable particle) -> DM 2. $M_1, M_2, \mu, M_2,$

その他の粒子の性質

共通@GUT Running effect 結合が強い程太る $m^2(\tilde{g}) = (2.8 m_{1/2})^2$ $m^2(\tilde{u}_L) = m_0^2 + 6.28 m_{1/2}^2 + 0.35 D$

$$m^2(\tilde{u}_R) = m_0^2 + 5.87m_{1/2}^2 + 0.16D$$

$$m^2(\tilde{d}_L) = m_0^2 + 6.28m_{1/2}^2 - 0.42D$$

$$m^2(\tilde{d}_R) = m_0^2 + 5.82m_{1/2}^2 - 0.08D$$

$$m^2(\tilde{e}_L) = m_0^2 + 0.52m_{1/2}^2 - 0.27D$$

$$m^2(\tilde{e}_R) = m_0^2 + 0.15m_{1/2}^2 - 0.23D$$

$$m^2(\tilde{v}_L) = m_0^2 + 0.52m_{1/2}^2 + 0.50D$$

$$\left(D = M_Z^2 \cos 2\beta < O(Higgs)\right)$$

これはモデルによる

LとR: SU(2)に対する電荷を持っているか 否かでfermionも2つに分類される。 それ以外の量子数は同じ。

> SU(3): 強い力 一番太る SU(2): 少し太る L>R

•Coloured partciles $(ilde{g}, ilde{q})$ は重い

・この関係式は(1),(2)に共通(3)に対しては、m_{1/2}の係数が予言出来なくなる

•第3世代の ç は軽い。 (Yukawa+LR mixingの効果) DMとの関係では τが大切

$$m^{2}(\tilde{\tau}) = \begin{bmatrix} m_{0}^{2} + 0.52m_{1/2}^{2} + m_{\tau}^{2} - 0.27D & -m_{\tau}(A_{\tau} + \mu tan\beta) \\ -m_{\tau}(A_{\tau} + \mu tan\beta) & m_{0}^{2} + 0.15m_{1/2}^{2} + m_{\tau}^{2} - 0.23D \end{bmatrix}$$

tanβが大きいと、τが大切

[2-1] LHCでの生成過程 QCDで出来る $(\tilde{g}\tilde{g},\tilde{g}\tilde{q},\tilde{q}\tilde{q})$

PDFを考えれば、直感的に

$m(\tilde{q}) = m(\tilde{g}) = 0.5 TeV$	σ∽100pb ỗỗ が主
$m(\tilde{q}) = m(\tilde{g}) = 1TeV$	σ∽3pb
$m(\tilde{q}) = m(\tilde{g}) = 2TeV$	σ∽20fb ũũ,ũἆ

[2-2]崩壊過程 $ilde{g}, ilde{q}$ のdecay table

	$m(\tilde{g}) < m(\tilde{q})$	$m(\tilde{g}) \approx m(\tilde{q})$	$m(\tilde{g}) > m(\tilde{q})$
~	$q\overline{q}\tilde{B}^{0} (\approx 1)$ $\tilde{g} \to q\overline{q}\tilde{W}^{0} (\approx 2)$		$\tilde{g} \rightarrow q\tilde{q}$
ĝ	$q\bar{q}\tilde{W}^{\pm}(\approx 4)$		
$ ilde{q}_{\scriptscriptstyle L}$	$\tilde{q}_L \rightarrow q\tilde{g}$	$\tilde{q}_L \rightarrow \frac{qV}{qV}$	$\tilde{V}^0 (\approx 1)$ $\tilde{V}^{\pm} (\approx 2)$
$ ilde{q}_{\scriptscriptstyle R}$	$\tilde{q}_R \rightarrow q\tilde{g}$		$\tilde{q}_R \rightarrow q\tilde{B}^0$

ここら辺はあまりモデルによらない。Massの関係やB,WとXの関係、第3世代などがモデル依存Runningの方程式:squarkの方が重い(第3世代を除いて)、DMまで気にするとm0が小さい

$ilde{\chi}_1^{\pm}, ilde{\chi}_2^{0}$ の崩壊モードについて

taneta>>1の時 $ilde{ au}_1$ が軽くなり、auへのdecay branchingが増える。au-IDが大切。Higgsino成分が多くなると、然り。

[2-3] 期待される Events topology

カスケード多段崩壊

高い Pt ジェット 複数 LSPが最後2個 LHC:Dmfactory →missing (mET) ゲージーノから、時々レプトンなど

multi leptons $\mathbb{E}_T + \text{High P}_T \text{ jets (+ b-jets)}$ $\mathsf{T-jets}$

[2-4] Background との比較

このPeak位置がSUSY粒子の質量スケール と強く関係している(~1.4*Msusy)

 $Meff(GeV) = mEt + \Sigma Pt of jet$

重くなると->右下へ移動

BG:

W,Zとttが主な バックグラウンド

Leptoinc decay LT Neutrinoが放出する。

W: 85 pb (with 4jet)

80 pb (with 4jet) **Z**:

830pb Top:

W/Zはmulti-Jetを要求することで 10-3 (0.2⁴) になっている。 検出器がちゃんと動けば、QCD(bb,cc)は効かない

One lepton mode

レプトンを要求するとBGが落とせる Topが主なBGで予言能力も高い ー> excessが綺麗に見える 2個レプトンを要求すると BGは更に減る 信号も少ない:モデル依存性が 強くなって行く

SUSY signal Mass=1TeV

SUSY signal Mass=800GeV 赤 stauが効くポイント Nu1とstauが同じようなmass

BG自体もデータから評価できる20-50%精度

[2-5] 発見能力(5σ)

1.5 TeVまで発見 L=1fb⁻¹ 2-2.3TeVまでの発見能力 L=30fb⁻¹

massと差が主

mE_T+Jets+Photon(s)

GMSUSY signal

 $M(\tilde{g}) \sim 700 GeV$

 $M(\tilde{q}) \sim 1 TeV$

Njet(P_T>50GeV)>=3 mE_T>100GeV P_T_LJ,2nd Jet >100GeV 2photons are required GM Nm=1 Nu1→γ**G**

ATLAS Preliminary

Main Bg is top-pair in which W decays into ev with hard FSR Almost BG free (Nph>=2) and this is clean signature of GM SUSY (gluino mass upto 1.6 TeV can be discovered with L=1fb⁻¹)

LHCの能力がモデルに著しく依存したSUSYしかカバーできないか?

生成過程は

ただのstrong interaction. Gluino,squark の massだけでほとんど 決まる。Cross-section はmass countur

LSP mass (GeV) for Gluino mass 1TeV

ー方崩壊の違いによる
Efficiencyの違いは小さい。
効くのは、LSPとのmass differenceが主:
ΔM(coloured vs LSP)=400GeVくらいまで
は安定
300GeVくらいから急激に小さくなる。
mET分布がきつくなる。

 Δ Mが極端に小さく(300GeV)なるようなことが起きなければ、LHCでしくじらない。 Gluino,squarkのmassだけで決まる。

[2-6] 質量の再構成に関して 🧃

 $ilde{q}$

 $ilde{oldsymbol{\chi}}_{2}^{0}$

 $\tilde{\ell}_{K}^{\pm}$

 $ilde{oldsymbol{\chi}}_{1}^{0}$

- 1. 適当なdecay chainを選ぶ (key point!)
 - 上手なselections less contamination / bias
- 2. mass やP_Tなどのkinematic distributionを作る
- 3. Edgeやendpointからmassの関係に束縛を与える

$$M_{\ell\ell}^{\max} = m(\tilde{\chi}_2^0) \sqrt{1 - \left(\frac{m(\tilde{\ell}_R^{\pm})}{m(\tilde{\chi}_2^0)}\right)^2} \sqrt{1 - \left(\frac{m(\tilde{\chi}_1^0)}{m(\tilde{\ell}_R^{\pm})}\right)^2}$$

- •一般に関係式の方が未知数(質量) より少ない。Modelの助けを借りて Massの絶対値を決める。
- •発見と違って、model依存性が強い

例として、Bulk point

Edge 1%程度で決まる。(ここまでは実験屋がまあ自信を持って言える)
→ mq(3%) m(nu2)=6% m(nu1)=10%

			Errors	
Variable	Value (GeV)	Stat. (GeV)	Scale (GeV)	Total
$m_{\ell\ell}^{max}$	77.07	0.03	0.08	0.08
mex muq	428.5	1.4	4.3	4.5
$m_{\ell q}^{low}$	300.3	0.9	3.0	3.1
$m_{\ell a}^{high}$	378.0	1.0	3.8	3.9
$m_{\ell\ell q}^{min}$	201.9	1.6	2.0	2.6
$m_{\ell\ell b}^{\widetilde{min}}$	183.1	3.6	1.8	4.1
$m(\ell_L) - m(ilde{\chi}_1^0)$	106.1	1.6	0.1	1.6
$m_{\ell\ell}^{max}(ilde{\chi}_4^0)$	280.9	2.3	0.3	2.3
$m_{\tau \tau}^{max}$	80.6	5.0	0.8	5.1
$m(\tilde{g}) - 0.99 \times m(\tilde{\chi}_1^0)$	500.0	2.3	6.0	6.4
$m(ilde{q}_R) - m(ilde{\chi}_1^0)$	424.2	10.0	4.2	10.9
$m(ilde{g})-m(ilde{b}_1)$	103.3	1.5	1.0	1.8
$m(ilde{g})-m(ilde{b}_2)$	70.6	2.5	0.7	2.6

DM particle mass m_{χ} (GeV)

Modelを仮定

差→ parameter →

$$\Omega_{\chi} h^2 = 0.1921 \pm 0.0053$$

 $\log_{10}(\sigma_{\chi p}/pb) = -8.17 \pm 0.04$

Recoil 実験と直接比較が可能になる 赤 最新Xenon10(Xe2相)

SUSYの証明 Spin測定 $(\tilde{\chi}_2^0)$ Lなので 相手はscalar Spinは同じ向き、Rの反粒子 に向き、Rの反粒子 結果 l_R^+ はqLと逆向きに出やすい Spinは逆なので

LHCはPPなので $N(\tilde{q}_L) > N(\overline{\tilde{q}}_L)$

$$m(q_L) = 630 GeV, m(\tilde{\chi}_2^0) = 219 GeV, m(\tilde{l}_R) = 155 GeV$$

Fast Simulation

m0が小さい2body decay chainの時可能

Universal Extra Dimension: 全てのSM粒子にKK excited Mode

基本的にSUSYと同じトポロジー 一つ高いexcitation stateが SUSY パートナー

区別は? -> spinを見る (Z* spin 1)

崩壊分岐比や結合定数の測定 -> ほぼ不可能

3rd Generation(stop,sbottom) が軽くなる Yukawa結合する higgsino成分へ 2 段増える

[3] 余剰次元

階層問題 Plank Scale vs EW scale

この問題をSUSYはcancelで保証: 余剰次元がある場合: TeVの余剰次元でPlanck を説明、Plank Scaleの余剰次元のwarp factorで EW scaleを説明

- (1) KK excitation of Graviton: (small Extra dim)
- (2) BHやモノジェット(LED)

我々は、3次元の膜の上に住んでいる!?

[3-1] KK excitation of Graviton

 M_{pl} :4次元でのPlanck scale (大きい) 余剰次元のサイズ $r_c \hookrightarrow M_{pl}^{-1}$

k: バルクの曲率 (0.1-0.01)*M_{pl} (0で歪みなし) ワープ係数 exp(-kr_cπ)=10⁻¹⁷ で階層問題が解決

KK: Graviton スケール Λ_{π} = M_{pl} exp(- $kr_{c}\pi$) M_{n} = x_{n} (k/M_{pl}) Λ_{π} x_{n} =3.8, 7, 10.2 ... n=1,2,3 Coupling 1/ Λ_{π}

 M_1 :1-10TeV first excitation stateの質量 数TeV Λ_{π} =10-100TeV(coupling) k/ M_{pl} =0.01-0.1 (3parameter/は独立でない)

KK Gravitonが生成される

分岐比は"民主的" すべてに等しく 後は自由度 (spin,flavor,color) $pp \rightarrow G^* \rightarrow e+e-$ が一番いいチャンネル:

Trackの分解能 $\Delta p/p$ ~ p で高い領域では悪くなる(μ 駄目)

カロリメータ分解能 $\Delta E/E \sim 1/SQRT(E)$ (統計) で良くなる gg \rightarrow G* \rightarrow $\gamma\gamma$ の角度分解能がBGに近くなる

Process	Distribution	Plot
gg o G o f ar f	$\sin^2\theta^*(2-\beta^2\sin^2\theta^*)$	a
q ar q o G o f ar f	$1 + \cos^2 \theta^* - 4\beta^2 \sin^2 \theta^* \cos^2 \theta^*$	b
$gg \to G \to \gamma\gamma, gg$	$1 + 6\cos^2\theta^* + \cos^4\theta^*$	c
$q \bar{q} \rightarrow G \rightarrow \gamma \gamma, gg$	$1-\cos^4\theta^*$	a
$gg \to G \to WW, ZZ$	$1 - \beta^2 \sin^2 \theta^* + \frac{3}{16} \beta^4 \sin^4 \theta^*$	d
$q\bar{q} \rightarrow G \rightarrow WW, ZZ$	$2 - \beta^2 (1 + \cos^2 \theta^*) + \frac{3}{2} \beta^4 \sin^2 \theta^* \cos^2 \theta^*$	e
$gg \to G \to HH$	$\sin^4 \theta^*$	f
$q \bar q o G o H H$	$\sin^2 \theta^* \cos^2 \theta^*$	g

 $L=100 \text{fb}^{-1} \text{ k/M}_{pl}=0.01$

G*=1.5TeV

綺麗なレゾナンズ BG DY過程 Z*→ee

$$k/M_{pl} = 0.01$$

 $k/M_{pl} = 0.1$

$$k/M_{pl} = 0.01$$
 $m(G^*)<1.7 TeV$
 $k/M_{pl} = 0.1$ $m(G^*)<3.5 TeV$

ちゃんと Spin2が 観測できて、 G*であることが 分かる。

3-2 TeVスケールの余剰次元 (Large ED) (Black Hole や KK-Graviton)

SM wall

G

G

Bulk

If gravity propagates in 4 + n dimensions, a gravity scale $\mathbf{M_D} \approx 1 \text{ TeV}$ is possible \rightarrow hierarchy problem solved

$$V_4(r) \sim \frac{1}{M_{Pl}^2} \frac{1}{r}$$
 $V_{4+n}(r) \sim \frac{1}{M_D^{n+2} R^n} \frac{1}{r}$

at large distance

$$M_{Pl}^2 \approx M_D^{n+2} R^n$$

n, R = number and size of extra-dimensions

Mp(Planck scale ~TeV) 隠れた次元n

Rsより小さいdでpartonが 衝突すると BHができる。 断面積が大きい。 (7,8TeV以下年間1万個以上)

衝突するパートンの不変質量 M_{BH} (Black Holeの質量)

$$R_{\rm S} = \frac{1}{\sqrt{\pi}M_P} \left[\frac{M_{\rm BH}}{M_P} \left(\frac{8\Gamma(\frac{n+3}{2})}{n+2} \right) \right]^{\frac{1}{1+n}}$$

古典近似を使って良いTHSが?

出来たBHは、安定化の後 Hawking Radiationで蒸発。

$$T_{H} = M_{P} \left[\frac{M_{P}}{M_{BH}} \left(\frac{n+2}{8\Gamma((n+3)/2)} \right) \right]^{\frac{2}{1+n}}$$
$$\frac{dN}{dE} \propto \frac{(E/T_{H})^{2}}{\exp(E/T_{H}) + c}$$

 $M_{Pl}=1 \text{TeV}, n=2 M_{BH}=5 \text{TeV}$

(Energitic 数100GeV のjet, photon, lepton がザクザクいて、まるいeventが特徴)

 M_{pl} < 6TeV or 2TeV for n=2-7 (L=10fb⁻¹)

Particle E -> 黒色輻射 ->温度が決まる はずだか実験的に難しい。

KK graviton gg->gK (モノジェット)

g

Gは狭い領域(TeV)⁻¹強い力 Gが高いエネルギーのgに結合

Events for HL, 100 fb^{-1}

Events for HL, 100 fo	
for $E_T^{jet} > 1 \mathrm{TeV}$	

$jZ(\nu\nu)$	$jW(\tau\nu)$	$jW(e\nu)$	$jW(\mu\nu)$
523	151	12	14

δ	M_D (TeV)	Events	$S_{max} = S/\sqrt{B}$
2	5	1430	61.4
	7	366	13.8
	9	135	5.1
3	5	705	26.7
	7	131	5.0
4	5	391	14.8
	7	53	2.0

\mathbb{E}_T distribution

[4]スカラー場: HIGGS場

自発的対称性の破れとスカラー場 (EW Higgsがインフラトンではないですが) 質量の起源を探る(宇宙の主役ではないですが)

現在の素粒子・宇宙の根幹をなす考え方

より高い対称性の状態から、自発的に対称性が破れて、今の「多彩な宇宙の構造」が作られた。 冷えることで一> 対称性の破れ: この場スカラー場を探る

[4-1] SM Higgs 生成過程 LHC

[4-2] Decay Branching Fraction

LEP でのSM精密測定 M(H)=115-200GeV(95%CL)

4 * 5 = 20通り

SM Higgsの研究で有効なチャンネルの纏め

生成過程	崩壊過程	有効な領域とその効能		
Gluon Fusion	$H \rightarrow \gamma \gamma$	110-140GeV	発見 Mass 測定 spin=0の傍証	
	H -> ZZ-> 4 I	140-1000	発見 ⋅ M ass, spin, coupling測定	
	H -> WW	130-170 GeV	発見	
	Η -> τ τ	110-140GeV	発見・Mass, coupling測定	
Vector Boson	H -> WW	130-200GeV	発見・W coupling測定	
Fusion (鍵のチャンネル)	Η-> γ γ	110-140GeV	<mark>発見</mark> Mass測定	
ttH	H -> bb	110-130GeV	Ytの測定(_{難しいチャンネル、)}	

preliminary

3つの解析は同じような発見能力をもっていて、3つ併せると、

Significance on H $\rightarrow \gamma\gamma$ @ L = 10fb⁻¹ significance Combined Combined results 1jet 2jets 0jet 0 jet **ATLAS** preliminary **Excluded by LEP** 110 115 120 125 130 135 140 Higgs mass (GeV)

軽いHiggsは、 $H->\gamma\gamma$ だけで 5σ ($L=10fb^{-1}$) しかも spin=0(2も可であるが)であることを示す重要な証拠

[2] VBF: H $\rightarrow \tau \tau$ (Yukawa結合)

H->tautau (Br=7%)

 $Br*\sigma = 300fb$

Tau 34% leptonic decay

-> trigger

(一方か両方のtauがleptonic decay)

au は軽いのでau の向きはlepton, hadoronとほぼ同じ向き (Collinear 近似)

ミッシング横方向のエネルギーの情報を使って

τの運動量が再構成出来る

→ Higgsの質量が再構成(信号のPeakが見える)

VBF H→ τ τ のM τ τ 分布 M_H=120GeV

Tauが再構成出来る 分解能は、ハドロン程度 σ~9GeV

$$\tau^+\tau^- \rightarrow h \nu_{\tau} \ell \nu_{\tau} \nu_{\ell}$$

$$\tau^+\tau^- \rightarrow \ell\ell 4\nu$$

[3] $H \rightarrow ZZ^{(*)} \rightarrow 4$ leptons

4レプトンの不変質量 非常に細くて綺麗
Irreducible BG qq_bar → ZZ* → 4I(連続分布)
Reducible BGs are tt & Zbb (Bのsemileptonic decayをレプトンとミス)
Isolation・impact parameterを厳しく

M(H)<130GeV & M(H)=170GeV (Branching small) 以外は綺麗CP, Spin of Higgs を決めることが出来る。

[4] **VBF H**→ **WW**

Leptonic decays of W

$$W^+W^- \rightarrow \ell \nu \ell \nu$$

Dilepton+mE_⊤

 $M_H = 160 GeV$ **ATLAS**

Lepton はスピンの 関係で同じ方向に出やすり

Higgs Spin0

W→Ivのアナロジー
$$M_T^2 = 2P_T P_{...L} (1 - \cos \phi)$$

Clear Jacobian Peak が綺麗に見える: $tt \rightarrow bb lvlv main BG$:

Φ between di-lepton (Rad)

SM Higgsの発見能力

黄色(H-> $\gamma\gamma$)がもっとよくなる。(jetの結果入れてない) (5 σ @L=10fb⁻¹ほど)

Higgs Mass と coupling 測定 (L=300fb⁻¹)

纏め

LHC: end of 2010(L=30fb⁻¹)

SUSY 2.5-3TeV までOK -> SUSYの厳しいテスト Higgs OK -> 真空の相転移シナリオのcriticalなテスト ED KK excitation 2-3TeV BH Mpl=2-5TeV Little Higgs, W'なども探ることが可能

Dark Sideの"素粒子的な解釈の"進むべき方向指針

Dark Energyについて"直接"何か出来るか?

Higgs Self-couplings $\lambda_{HHH}^{SM} = 3 \frac{m_H^2}{v}, \quad \lambda_{HHHH}^{SM} = 3 \frac{m_H^2}{v^2}$

$$\lambda_{HHH}^{\scriptscriptstyle SM} = 3\,rac{m_H^2}{v}\,,\quad \lambda_{HHHH}^{\scriptscriptstyle SM} = 3\,rac{m_H^2}{v^2}$$

In order to determine the shape of Higgs potential, Slope of potential is correspond to Self-coupling

σxBr is small Need very High Luminosity ->SLHC

For **6000 fb**⁻¹ (SLHC)

 $\Delta\lambda \sim 19\%$ for 170 GeV M_H

$$gg \rightarrow HH \rightarrow W^+W^-W^+W^- \rightarrow \ell^{\pm}\nu jj\ell^{\pm}\nu jj$$

Table 8: Expected numbers of signal and background events after all cuts for the $gg \rightarrow HH \rightarrow 4W \rightarrow \ell^+\ell'^+4j$ fi nal state, for $\int \mathcal{L} = 6000 \text{ fb}^{-1}$.

m_H	Signal	$t\bar{t}$	$W^{\pm}Z$	$W^{\pm}W^{+}W^{-}$	$t\bar{t}W^{\pm}$	$t\bar{t}t\bar{t}$	S/\sqrt{B}
170 GeV	350	90	60	2400	1600	30	5.4
$200~{\rm GeV}$	220	90	60	1500	1600	30	3.8

Vector Boson Fusion過程 (VBFの提案 1998 Zeppenfeld et al.)

クォークから放出されたゲージ粒子の融合からヒッグスが生成される。

Vector Boson Fusion過程の特徴

QCD(color exchange) 反跳したパートンが前後方で検出 横方向運動量: W/Zの質量 order Color exchangeがない。 Rapidity GAPが存在

> Color Exchangeがある場合の ジェットの分布評価など実際には 難しい。(20-30%不定性)

1-3 Promising event topologies with mE_⊤ are listed:

Jet multi (high Pt)	Additional obj.	Favored scenario	Dominant SM background processes		
	No lepton	SUGRA,AMSB, Heavy $ ilde{q}$	QCD(light & bb/cc) $t\bar{t}(\rightarrow b\bar{b}q\bar{q}\tau\nu)$ Z(->nunu) and W(->taunu)		
High	One lepton	SUGRA,AMSB, Heavy \tilde{q}	$t \bar{t} (\rightarrow b \bar{b} q \bar{q} \ell \nu)$ W(->taunu)		
Multiplicity Nj>=3,4 Dilepton,3L Tau (ditau)	SUGRA,AMSB, GMSB (Nm>1)	OS: $t\bar{t}(\rightarrow b\bar{b}\ell\nu\ell\nu)$ SS,3L ZW,ZZ $t\bar{t}(\rightarrow b\bar{b}\ell\nu\ell\nu)$			
	Tau (ditau)	Large tanβ, GMSB (Nm>1)	$\begin{array}{c} W \text{ (->taunu)} \\ t\bar{t} \text{ (} \rightarrow b\bar{b}q\bar{q}\tau\nu\text{)} \end{array}$		
	YY	GMSB (Nm \sim 1) $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$	Almost BG Free $t\bar{t}(\rightarrow b\bar{b}evev)$ FSR		
Low	No lepton	Heavy $ ilde{g}$ KK Graviton	Z(->nunu) W(->taunu)		
Multiplicity Nj∽1,2	One lepton	Heavy \tilde{g} Top like particle LH(W'Z')	$W,Z \qquad t\bar{t}(\to b\bar{b}\ell\nu\ell\nu)$		
No jet	One Lepton	W'	W		
Nj = 0	Dilepton,3L	Direct $ ilde{\chi}$	WW,WZ,ZZ WZ main for 3L		

(Black shows various SUSY models and Blue non-SUSY models)

[4-4] Understanding of the background processes

Background is estimated with "real data itself" (not estimated with MC):

We have good control samples of $Z(\rightarrow ee/mumu)$ +jets, $W(\rightarrow lv)$ +jets and $tt\rightarrow bblvqq$ with $M_T < M_W$. From them, the background of $Z(\rightarrow vv)$, $W(\rightarrow lv)$, tt with large mE_T & $M_T > M_W$.) can be estimated.

For examples: these four plots show mE_T spectra for various processes

Z and W background for no-lepton mode

Top pair background for one lepton mode

R:tt BG

B:estimated

Without SUSY signal

With 1TeV SUSY signal

Background could be estimated with real data itself with accuracy of about 50%

Let's combine ATLAS & CMS

With L=1fb-1

 \tilde{q}, \tilde{g} Up to 1.6TeV

(2TeV for 95%CL exclusion)

These do not strongly depend on model:

Important parameters are masses of \tilde{q} , \tilde{g} and the mass difference between them and LSP(>= 400GeV)

$$\tilde{g} \sim 1.6 \text{TeV}$$

$$\tilde{\chi}_{1}^{\pm} \approx 500 GeV$$

$$\tilde{\chi}_{1}^{0} \approx 250 GeV$$

Naïve GUT assumption Gaugino-like

One Tau BG process: Top & W contribute:

One Tau

