

ダークエネルギー? 非一様宇宙!

葛西 真寿

(弘前大学 大学院理工学研究科) 2007年5月28日

研究会: 宇宙初期における時空と物質の進化@東京大学

加速膨張の観測的証拠

OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT

ADAM G. RIESS,¹ ALEXEI V. FILIPPENKO,¹ PETER CHALLIS,² ALEJANDRO CLOCCHIATTI,³ ALAN DIERCKS,⁴ PETER M. GARNAVICH,² RON L. GILLILAND,⁵ CRAIG J. HOGAN,⁴ SAURABH JHA,² ROBERT P. KIRSHNER,² B. LEIBUNDGUT,⁶ M. M. PHILLIPS,⁷ DAVID REISS,⁴ BRIAN P. SCHMIDT,^{8,9} ROBERT A. SCHOMMER,⁷ R. CHRIS SMITH,^{7,10} J. SPYROMILIO,⁶ CHRISTOPHER STUBBS,⁴

NICHOLAS B. SUNTZEFF,⁷ AND JOHN TONRY¹¹

Received 1998 March 13; revised 1998 May 6

ABSTRACT

We present spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range $0.16 \le z \le 0.62$. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-z Supernova Search Team and recent results by Riess et al., this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmological parameters: the Hubble constant (H_0), the mass density (Ω_M), the cosmological constant (i.e., the vacuum energy density, Ω_{Λ}), the deceleration parameter (q₀), and the dynamical age of the universe (t₀). The distances of the high-redshift SNe Ia are, on average, 10%–15% farther than expected in a low mass density ($\Omega_M = 0.2$) universe without a cosmological constant. Different light curve fitting methods, SN Ia subsamples, and prior constraints unanimously favor eternally expanding models with positive cosmological constant (i.e., Ω constraint on mass der consistent with $q_0 < 0$ confidence levels, for tw_{-} 0.2, results in the weakest detection, $\Omega_{\Lambda} > 0$ at the 3.0 σ confidence level from one of the two methods. For a flat universe prior $(\Omega_M + \Omega_{\Lambda} = 1)$, the spectroscopically confirmed SNe Ia require $\Omega_{\Lambda} > 0$ it 7 σ and 9 σ formal statistical significance for the two different fitting methods. A universe closed by ordinary matter (i.e., $\Omega_M = 1$) is formally ruled out at the 7 σ to 8 σ confidence level for the two different fitting

mothods. We estimate the dynamical are of the universe to be 1/2 + 1.7 Gyr including systematic uncert

MEASUREMENTS OF Ω AND Λ FROM 42 HIGH-REDSHIFT SUPERNOVAE

S. PERLMUTTER,¹ G. ALDERING, G. GOLDHABER,¹ R. A. KNOP, P. NUGENT, P. G. CASTRO,² S. DEUSTUA, S. FABBRO,³ A. GOOBAR,⁴ D. E. GROOM, I. M. HOOK,⁵ A. G. KIM,^{1,6} M. Y. KIM, J. C. LEE,⁷ N. J. NUNES,² R. PAIN,³

C. R. PENNYPACKER,⁸ AND R. QUIMBY

Institute for Nuclear and Particle Astrophysics, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720

ABSTRACT

We report measurements of the mass density, Ω_M , and cosmological-constant energy density, Ω_Λ , of the universe based on the analysis of 42 type Ia supernovae discovered by the Supernova Cosmology Project. The magnitude-redshift data for these supernovae, at redshifts between 0.18 and 0.83, are fitted jointly with a set of supernovae from the Calán/Tololo Supernova Survey, at redshifts below 0.1, to yield values for the cosmological parameters. All supernova peak magnitudes are standardized using a SN Ia light-curve width-luminosity relation. The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation $0.8\Omega_M = 0.6\Omega_A \approx -0.2 \pm 0.1$ in the region of interest ($\Omega_M \leq 1.5$). For a flat ($\Omega_M + \Omega_\Lambda = 1$) cosmology we find $\Omega_M^{\text{flat}} = 0.28^{+0.09}_{-0.08}$ (1 σ statistical) $^{+0.05}_{-0.04}$ (identified systematics). The data are strongly inconsistent with a $\Lambda = 0$ flat cosmology, the simplest

宇宙定数がないとだめ!

redshift z

(見かけの)加速膨張を ダークエネルギー無しで 説明しようとする試み

ダークエネルギーが必要なのは 一<mark>様等方</mark>宇宙を仮定して得られた m-z relation を使うから

現実の宇宙は非一様なんだから 非一様宇宙での光の伝播を 解かなきゃ...

でも <u>一般的な非一様宇宙って</u> 難しいから まずは簡単な toy model で…

非一様宇宙の可能性

- Tomita (2000a, 2000b, 2001, ...)
 local void model
- Iguchi, Nakamura, Nakao (2002)
 Lemaitre-Tolman-Bondi (LTB) model
- Alnes et al. (2006)
 LTB modelでSNもCMBもOK!?

A local void and the accelerating Universe

K. Tomita*

Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502, Japan

ABSTRACT

Corresponding to the recent observational claims that we are in a local void (an underdense region) on scales of 200–300 Mpc, the magnitude–redshift relation in a cosmological model with a local void is investigated. It is already evident that the accelerating behaviour of high-*z* supernovae can be explained in this model, because the local void plays a role similar to the positive cosmological constant. In this paper the dependence of the behaviour on the gaps of cosmological parameters in the inner (low-density) region and the outer (high-density) region, the radius of the local void, and the clumpiness parameter is studied and its implications are discussed.

local void は宇宙定数と似た振る舞いをする

Figure 1. Model with a spherical single shell. Redshifts for observers at O and C are z and \overline{z} .

inner low-density Friedmann + singular mass shell (junction condition) + outer high-density Friedmann

Figure 2. The [m, z] relation in cosmological models with a local void. The solid line denotes the case with a standard parameter set given in equation (12). The dotted and dashed lines stand for homogeneous models with (Ω_0, λ_0) = (0.3, 0.7) and (0.3, 0.0), respectively, for comparison.

essential なところは 一連の冨田論文で尽きている

現実の我々の宇宙が そんな toy model で 本当に記述されるのか? という心理的パリア

そこで

特定の toy model に 依存せずに 非一様宇宙の効果を 記述する手法

超新星の m-z relation

再吟味

対象とする 観測データは...

Hubble diagram for 42+18 type Ia SNe

data taken from Perlmutter et al. (1999)

観測データを fitさせる m-z relation

luminosity distance $D_L(z)$ は 3つの定数 $H_0, \Omega_m, \Omega_\Lambda$ をパラメータに持つ zの(複雑な)関数

だが…

対象とするSNデータがz < 1なので Taylor 展開した式で十分

$$D_L(z) = rac{c}{H_0} \left(z + rac{d_2}{2} z^2 + rac{d_3}{3} z^3
ight)$$

$$egin{aligned} m &= M - 5 + 5 \log_{10} D_L(z) \ &= \mathcal{M} + 5 \log_{10} \left\{ z + d_2 \, z^2 + d_3 \, z^3
ight\} \ &\mathcal{M} &\equiv M - 5 + 5 \log_{10} rac{c}{H_0} \end{aligned}$$

 \mathcal{M} : "the magnitude zero-point" or " H_0 -free absolute magnitude"

effective m_B

ちょっと 遊んでみる

low redshift マイの2の決差 人なしで打

high redshift **Z > 03の法を** れなしで前

まとめて表示

宇宙論パラメータ決定のあらまし

- おもに low redshift データから \mathcal{M} 従って H_0 が決まる.
- その値を一定として high redshift データも fit しようとすると、 Ω_{Λ} が必要になる.
- low-z と high-z で異なる値の M を許せば,
 それぞれは Λ 無しでも fit できる.

low-z, high-z で違う M. その解釈は?

 $\mathcal{M} = M + 5 \log_{10} \frac{c}{H_0} - 5$

low-z 領域と high-z 領域では...

1. 絶対等級 M が違う

2. 光速 c が違う

3. <u>H</u>₀ が違う

超新星の m-z relation が意味するのは, Λ があることではなく, H_0 や Ω_m が一定ではないこと!?

Dark Energy なしで OK

非一様宇宙の post-Friedmann的効果を luminosity distance に どのように取り込むか?

ー様宇宙なら,

$$H_{0} \equiv \frac{1}{3} \theta(t_{0}, x_{i}) \Rightarrow H(t_{0}) \quad (定数)$$

$$\Omega_{m} \equiv \frac{8\pi G \rho(t_{0}, x^{i})}{3 H_{0}^{2}} \Rightarrow \Omega_{m}(t_{0}) \quad (定数)$$
非一様宇宙では,
$$H(t_{0}, x^{i}) = H(t_{0}, x^{i}(z)) \Rightarrow H_{0}(z)$$

$$\Omega_{m}(t_{0}, x^{i}) = \Omega_{m}(t_{0}, x^{i}(z)) \Rightarrow \Omega_{m}(z)$$

非一様宇宙では

expansion θ や density ρ の空間依存性に起因して H_0 や Ω_m は、一般に redshift z 依存性を持つだろう.

$$H_0(z) = \bar{H}_0 \left(1 + h_1 z + h_2 z^2 + \cdots \right)$$
$$\Omega_m(z) = \bar{\Omega}_m \left(1 + \omega_1 z + \omega_2 z^2 + \cdots \right)$$

 $h_1, h_2, \omega_1, \omega_2, \cdots$ \mathcal{N} post-Friedmannian corrections

時空の非一様性に起因する post-Friedmann 的補正を 考慮した luminosity distance

$$D_L(z) = \frac{c}{\bar{H}_0} \left(z + \tilde{d}_2 z^2 + \tilde{d}_3 z^3 + \cdots \right)$$

$$\tilde{d}_2 = \frac{1}{4} \left(2 - \bar{\Omega}_m + 2 \,\Omega_\Lambda - 4 \,h_1 \right)$$

$$\tilde{d}_3 = \frac{1}{8} \left(\bar{\Omega}_m^2 + 4 \,\Omega_\Lambda^2 - 4 \,\bar{\Omega}_m \,\Omega_\Lambda - 2 \,\bar{\Omega}_m - 4 \,\Omega_\Lambda \right)$$

+(terms with h_1, h_2, ω_1)

観測データとのfittingによって得られた $\frac{1}{d_2}$, $\frac{1}{d_3}$ から 一様等方宇宙だと思い込んで 宇宙論パラメータを求めると たとえ, $\Omega_{\Lambda} = 0$ であっても

$$\Omega_{\Lambda}^{\text{eff}} \equiv \tilde{d}_{2} \left(2 \, \tilde{d}_{2} - 1 \right) - \tilde{d}_{3}$$
$$= \frac{1}{8} \left\{ 6h_{1} \bar{\Omega}_{m} + \frac{4}{3} \omega_{1} \bar{\Omega}_{m} - 4h_{1} + 8 \left(h_{1}\right)^{2} + 8h_{2} \right\}$$

非一様宇宙の post-Friedmannian correction が Ω_{Λ} としてふるまう!

それでも 一根等方宇宙に こだわる?

ー様等方モデルにこわだる限り 「Dark Side」は必要...

正体不明の「Dark Side」の 導入は問題解決になる?

見るのだるるな

非
 一様宇宙論屋に
 Forceの御加護が
 ありますように...

Astrophysics

Apparent Acceleration through Large-scale Inhomogeneities --Post-Friedmannian Effects of Inhomogeneities on the Luminosity Distance--

Masumi Kasai

(Submitted on 13 Mar 2007 (v1), last revised 24 May 2007 (this version, v3))

We re-analyze the observed magnitude-redshift relation of type la supernovae (SNe Ia) and examine the possibility that the apparent acceleration of the cosmic expansion is not caused by dark energy but is instead a consequence of the large-scale inhomogeneities in the universe. We propose a method to phenomenologically describe the effects of the large-scale inhomogeneities without relying on the specific toy models of the inhomogeneous universe. This method clearly illustrates how the post-Friedmannian effects of inhomogeneities, i.e. the effects due to the deviation from a perfectly homogeneous and isotropic model, act as an effective cosmological constant in the magnitude-redshift relation of SNe Ia.